

Biotechnology & Biomanufacturing

Use of biological systems for the production, conversion, or functionalization of resources and (raw)materials

Gefördert durch:

Discover – Develop – Connect

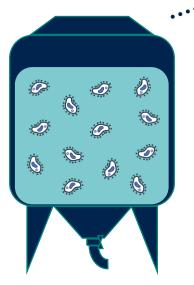
aufgrund eines Beschlusses des Deutschen Bundestages

Content

Fermentation – Mild reaction to access a wide product range

Protein Engineering – Tailored biomolecules

Bifunctional peptides – Biological adhesion promoters



Fermentation

Microbial or enzymatic conversion or organic substances

- Agricultural mass
- Organic waste (residuals, green waste, waste water etc.)

Fermenter (Bioreactor)

- pH value
- Temperature
- Microorganism/enzyme class
- Aerobic or anaerobic

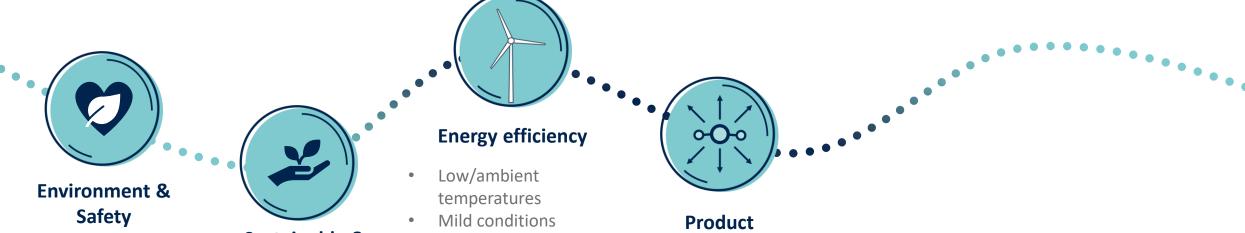
Plattform chemicals, building blocks

e.g.

- Ethanol
- Acidic acid
- Lactic acid
- Diacids
- Citric acid
- Butanol

Potential of fermentation

Environment 8 Safety


- Typically free of toxic solvents/reactants
- Less hazardous side products
- Products are often bio-degradable

- Sustainable & renewable sources
- Biomass use
- Reduction of greenhouse gas emission

Potential of fermentation

Ambient pressure

- Typically free of toxic solvents/reactants
- Less hazardous side products
- Products are often bio-degradable

- Sustainable & renewable sources
- Biomass use
- Reduction of greenhouse gas emission

- variety
- Broad range of plattform chemicals accessible
- Access to highly functionalized molecules

Potential of fermentation

Environment & Safety

- Typically free of toxic solvents/reactants
- Less hazardous side products
- Products are often bio-degradable

Sustainable & renewable sources

- Biomass use
- Reduction of greenhouse gas emission

- Low/ambient temperatures
- Mild conditions
- Ambient pressure

Product variety

- Broad range of plattform chemicals accessible
- Access to highly functionalized molecules

Optimization

- High specificity possibleEngineering of proteins
 - and microorganisms allows increased selectivity, conversion and yield

Economy

- Cost efficiency
- Scalability

Large-scale production of many medicines and active substances (e.g., antibiotics, penicillin) with assured quality

Large-scale production of many medicines and active substances (e.g., antibiotics, penicillin) with assured quality

Crucial role in the **production of beverages and food** to generate **texture, falvor, and shelf life** (e.g., baked goods, cheese, yoghurt, beer and wine)

Large-scale production of many medicines and active substances (e.g., antibiotics, penicillin) with assured quality

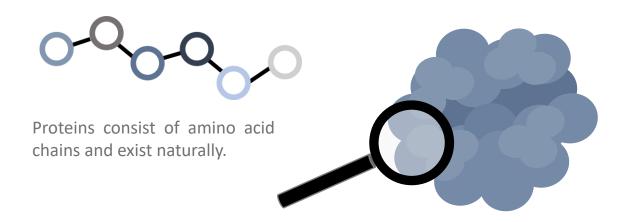
Biorefinery and conversion of sugar from biomass to bioethanol


Crucial role in the **production of beverages and food** to generate **texture, falvor, and shelf life** (e.g., baked goods, cheese, yoghurt, beer and wine)

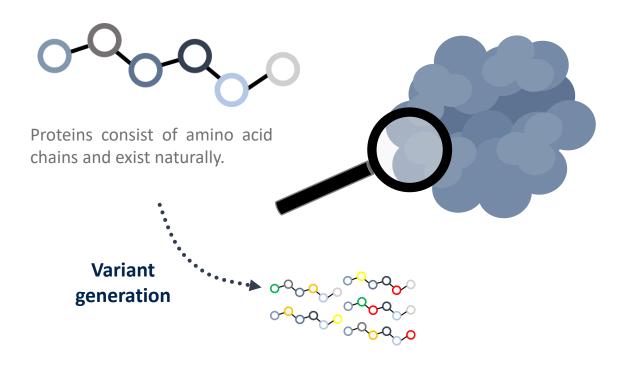
Large-scale production of many medicines and active substances (e.g., antibiotics, penicillin) with assured quality

Biorefinery and conversion of sugar from biomass to bioethanol

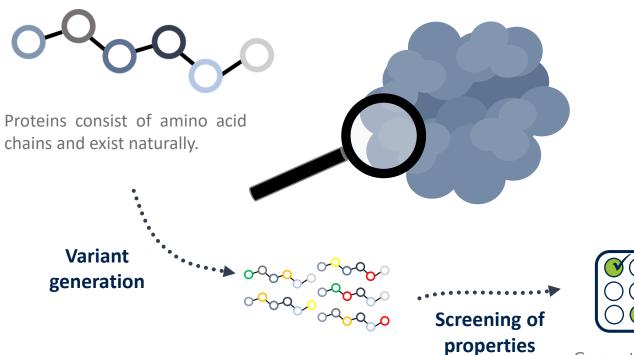
Crucial role in the **production of** beverages and food to generate texture, falvor, and shelf life (e.g., baked goods, cheese, yoghurt, beer and wine)



Production of enzymes for industrial applications, such as proteases, lipases, and cellulases for detergents


Construction, optimization and production of proteins (including enzymes)

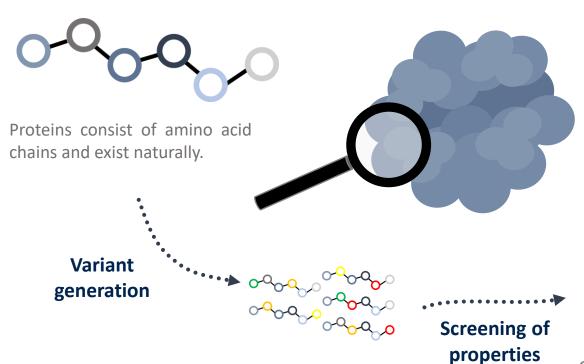
Construction, optimization and production of proteins (including enzymes)



Using biotechnological methodologies, amino acids can be exchanged by others in a side-directed or random fashion.

Construction, optimization and production of proteins (including enzymes)

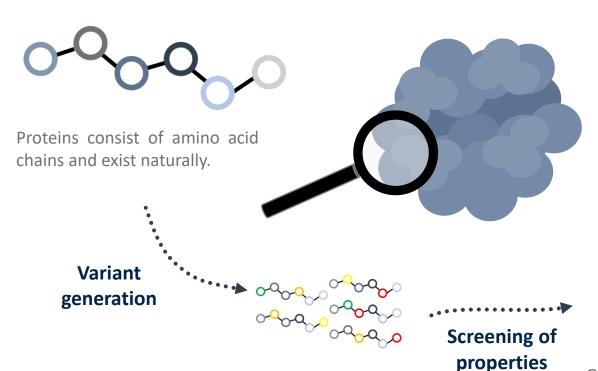
Using biotechnological methodologies, amino acids can be exchanged by others in a side-directed or random fashion.



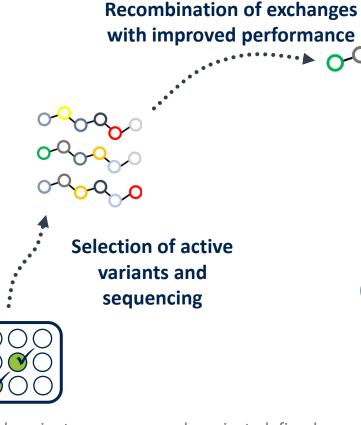
Generated variants are screened against defined functions (e.g., conversion of a specific reaction, binding affinity toward selected materials)

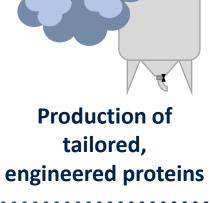
Construction, optimization and production of proteins (including enzymes)

Using biotechnological methodologies, amino acids can be exchanged by others in a side-directed or random fashion.


Recombination of exchanges with improved performance Selection of active variants and sequencing

Generated variants are screened against defined functions (e.g., conversion of a specific reaction, binding affinity toward selected materials)



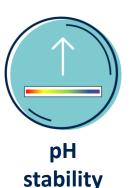

Construction, optimization and production of proteins (including enzymes)

Using biotechnological methodologies, amino acids can be exchanged by others in a side-directed or random fashion.

Generated variants are screened against defined functions (e.g., conversion of a specific reaction, binding affinity toward selected materials)

Tailored function through protein engineering

The natural **thermal stability** of proteins varies greatly and depends on the natural origin of the protein. It can be **improved compared to the native form** by modifying its structure, which leads to more intramolecular bonds. Typically, a **balance between stability and activity** must be taken into account.



Tailored function through protein engineering

The natural **thermal stability** of proteins varies greatly and depends on the natural origin of the protein. It can be **improved compared to the native form** by modifying its structure, which leads to more intramolecular bonds. Typically, a **balance between stability and activity** must be taken into account.

Natural processes such as biocatalysis usually work best within **defined pH** ranges. These can be modified to allow for improved tolerance to fluctuations, broader pH ranges or specific processing conditions.

Tailored function through protein engineering

Thermal stability

The natural **thermal stability** of proteins varies greatly and depends on the natural origin of the protein. It can be **improved compared to the native form** by modifying its structure, which leads to more intramolecular bonds. Typically, a **balance between stability and activity** must be taken into account.

pH stability

Natural processes such as biocatalysis usually work best within **defined pH** ranges. These can be modified to allow for improved tolerance to fluctuations, broader pH ranges or specific processing conditions.

Tolerance against ionic liquids

The use of ionic liquids (ILs) is playing an increasingly important role in the **processing of biological materials** (e.g., the extraction of cellulose fibers). They are also used as substitutes for conventional volatile organic solvents and compounds. **Tolerance to ionic liquids** can therefore be **particularly important in the industrial use of enzymes**.

Tailored function through protein engineering

Proteins can be **naturally catalytically active** and carry out a specific chemical reaction (e.g., hydrolysis). These types of **reactions can be relevant for industrial processes** and can be used for example for the targeted degradation of substances (e.g., degradation of polymers/plastics). The **conversion**, **yield and reaction rate can be significantly improved**.

Tailored function through protein engineering

Regioselectivity

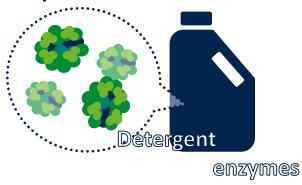
Proteins can be **naturally catalytically active** and carry out a specific chemical reaction (e.g., hydrolysis). These types of **reactions can be relevant for industrial processes** and can be used for example for the targeted degradation of substances (e.g., degradation of polymers/plastics). The **conversion**, **yield and reaction rate can be significantly improved**.

The regioselectivity of a chemical synthesis plays a decisive role in the resulting chemical and physical properties, not only for active (bio)molecules. Enzymes enable very good regioselectivity at mild/ambient conditions and employing less synthesis steps than conventional organic chemical synthesis.

Tailored function through protein engineering

Regioselectivity

Materialspecificity


Proteins can be **naturally catalytically active** and carry out a specific chemical reaction (e.g., hydrolysis). These types of **reactions can be relevant for industrial processes** and can be used for example for the targeted degradation of substances (e.g., degradation of polymers/plastics). The **conversion**, **yield and reaction rate can be significantly improved**.

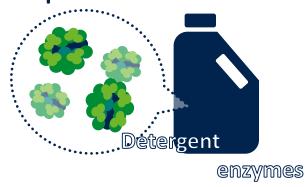
The regioselectivity of a chemical synthesis plays a decisive role in the resulting chemical and physical properties, not only for active (bio)molecules. Enzymes enable very good regioselectivity at mild/ambient conditions and employing less synthesis steps than conventional organic chemical synthesis.

Similar to the activity of catalytically active proteins, functionalization on and in materials using proteins can be tailored by improved specificity toward particular materials. This can enable, for example, selective binding/labeling or functionalization in material mixtures. Both natural and man-made materials are applicable.

Substrate specificity enables high efficiency with small dosages, thereby protecting textiles to preserve durability.

Stability in the presence of surfactants and other components, as well as at different pH values.

High **efficiency** at low temperatures enables significant energy savings.


Biodegradability of enzymes makes them more environmentally friendly than synthetic chemicals.

Biotechnology & Biomanufacturing

Everyday examples

Substrate specificity enables high efficiency with small dosages, thereby protecting textiles to preserve durability.

Substrate specificity ensures faster and more efficient conversion of complex carbohydrates (e.g., from grains) into sugars.

Stability in the presence of surfactants and other components, as well as at different pH values.

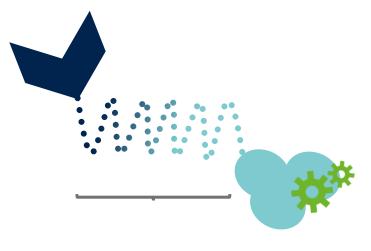
Stability at elevated temperatures (pre-treatment and hydrolysis of biomass) as well as at different pH values or in presence of larger amounts of ethanol and inhibitors.

High **efficiency** at low temperatures enables significant energy savings.

More flexible adaptability of processes while reducing toxic chemicals, especially in second-generation biomass.

Biodegradability of enzymes makes them more environmentally friendly than synthetic chemicals.

Renewability of the raw materials makes the product more environmentally sustainable.


Bifunctional peptides

Tailored biological adhesion promoters^[1]

Peptide A | ADHESION

- Small domain (ca. 10-50 amino acids)
- Tailor-made for strong,
 spezific binding to
 Material 1

Spacer

- small helix
- separates peptide A and peptide B to prevent undesired interactions

Peptide B | FUNCTION

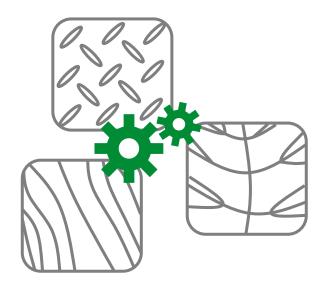
- Small domain (ca. 10-50 amino acids)
- Tailor-made for:

Binding of molecules (e.g. flame retardant)

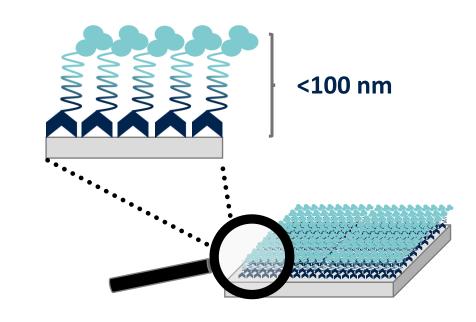
Function: biological (e.g. anti-microbial), chemical (e.g. anti-corrosive), physical (e.g. hydrophobic, hydrophilic)

strong, specific binding to Material 2

Functionalization ON material

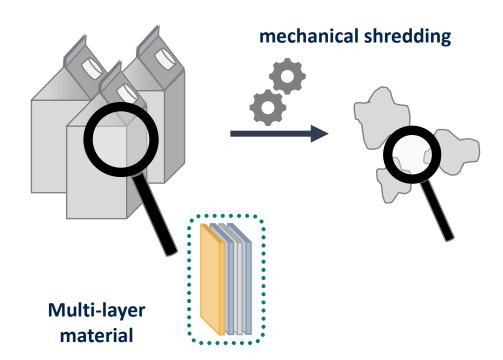


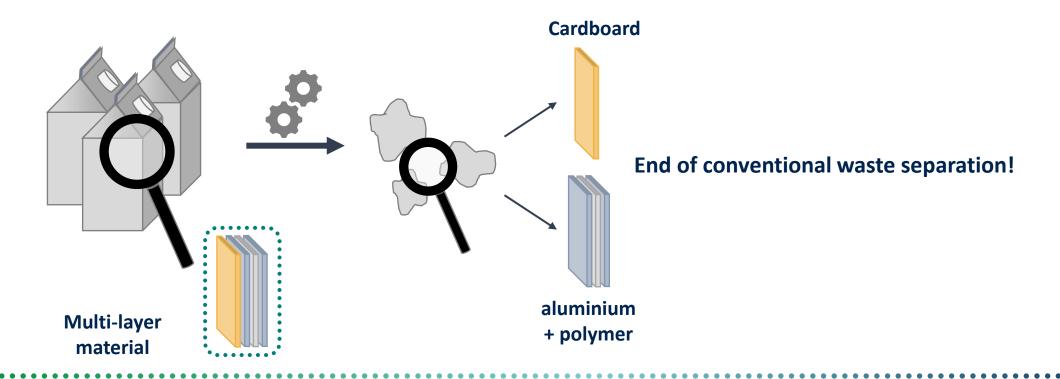
- Functional coatings (e.g. hydrophobic, hydrophilic, flame-retardancy or other functions)
- **Switchable adhesives** (e.g. for selective disassembly of multi-component material)
- **Biological cross-linker** (e.g. for fiber extension)

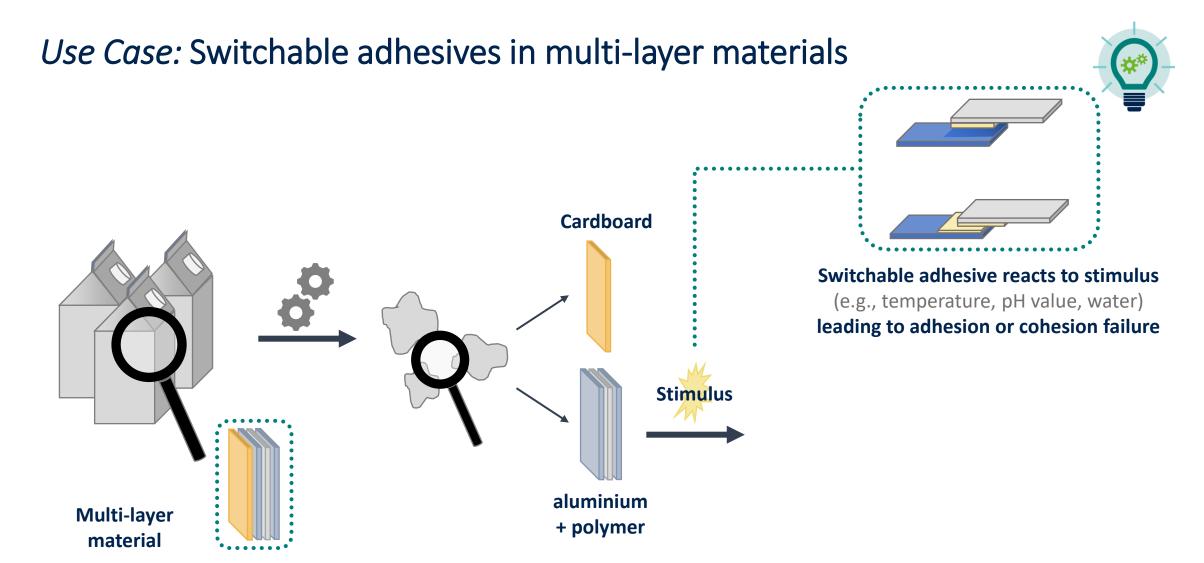


Functionalization ON material

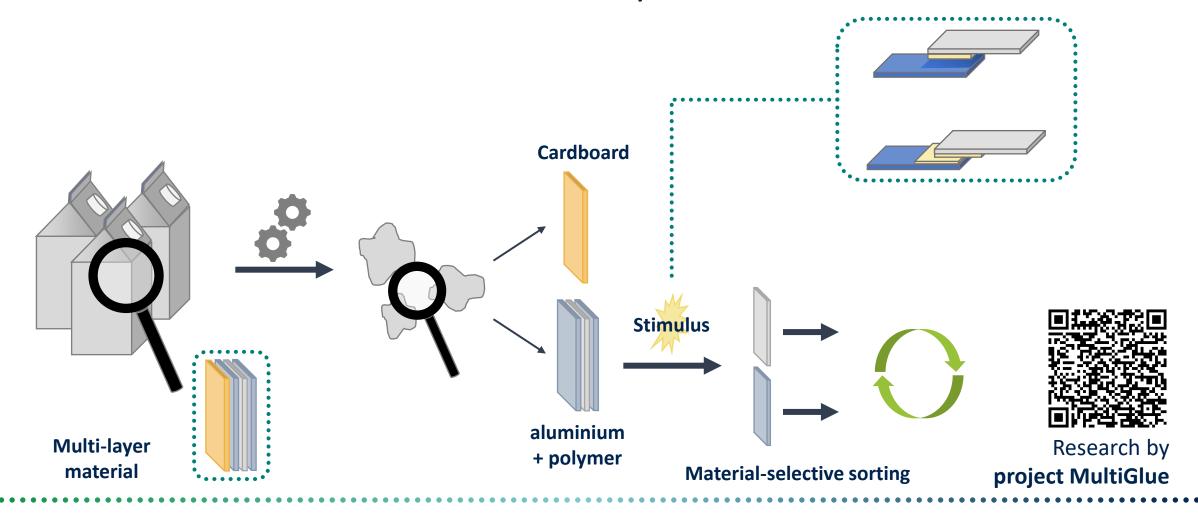
- Functional coatings (e.g. hydrophobic, hydrophilic, flame-retardancy or other functions)
- **Switchable adhesives** (e.g. for selective disassembly of multi-component material)
- **Biological cross-linker** (e.g. for fiber extension)

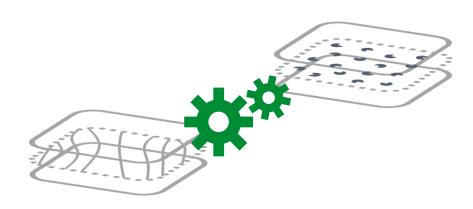

- ✓ material-specific binding (e.g., to PLA, PE, PA)
- ✓ high mass/area efficiency (1 g peptide for ca. 250 m²)
- √ high coating density
- ✓ scaleable & cost efficient production
- compatible with standard coating methods (e.g. dip-coating, spray coating)


Use Case: Switchable adhesives in multi-layer materials

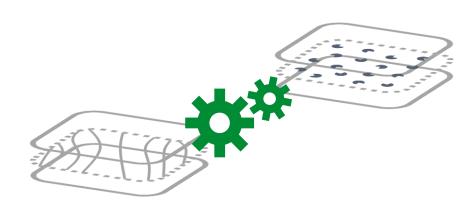


Use Case: Switchable adhesives in multi-layer materials



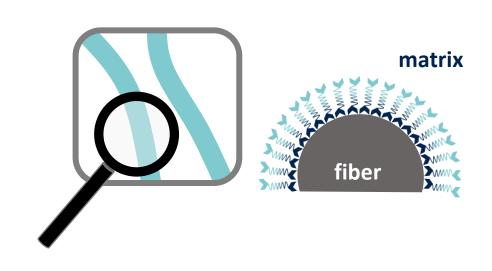

Use Case: Switchable adhesives in multi-layer materials

Functionalization IN material



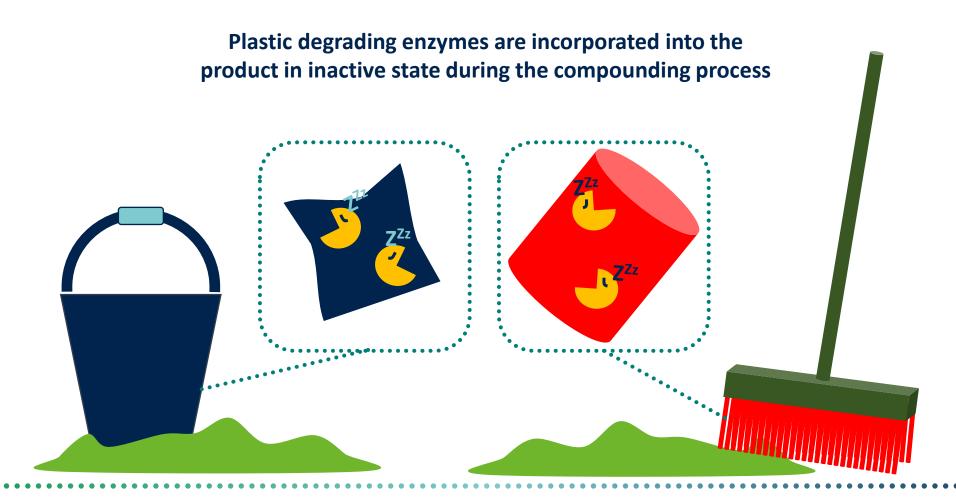
- (Programmed) degradation (e.g., of plastics with high littering risk)
- Compatibility in composites (e.g., in fiber-reinforced plastics)
- Material-specific de-polymerization (e.g., in mixed plastics)

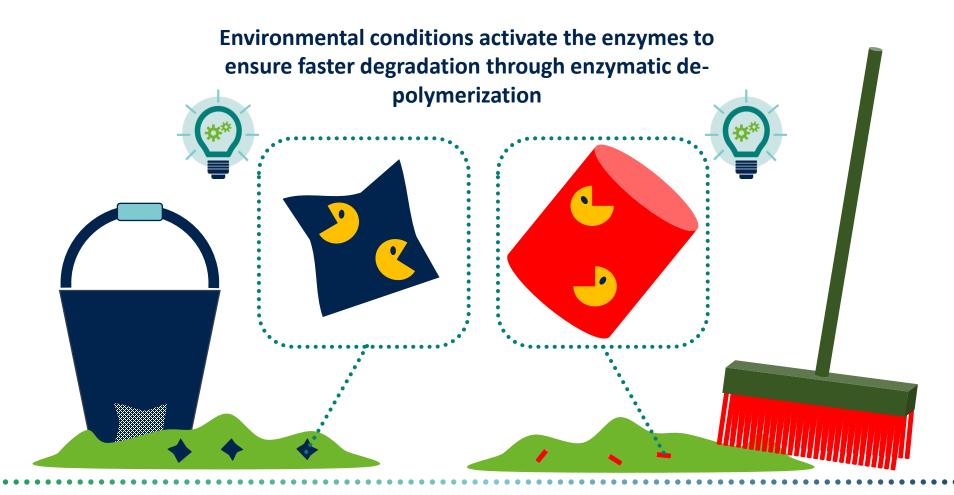
Biotechnology & Biomanufacturing

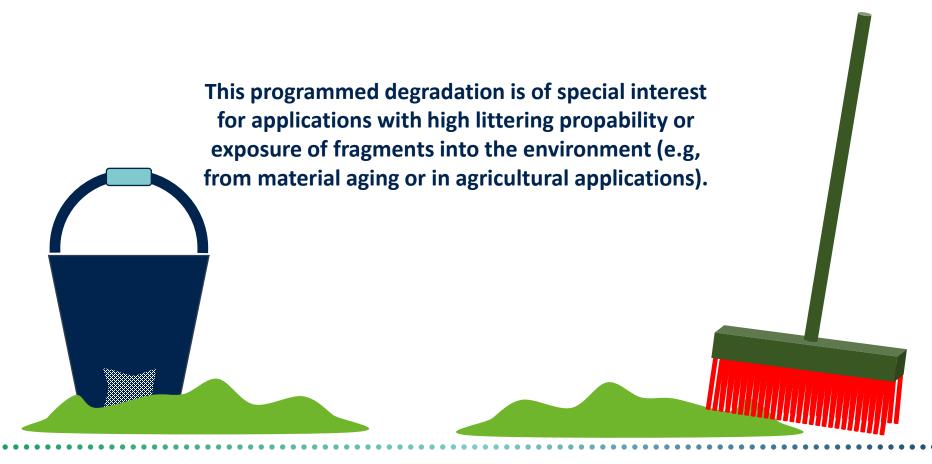


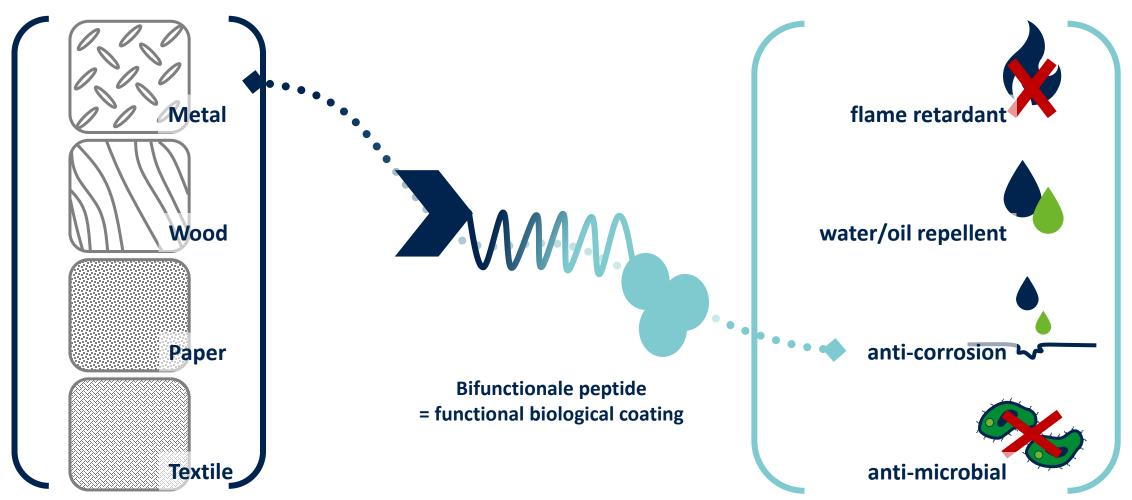
Functionalization IN material

- (Programmed) degradation (e.g., of plastics with high littering risk)
- Compatibility in composites (e.g., in fiber-reinforced plastics)
- Material-specific de-polymerization (e.g., in mixed plastics)


- ✓ material-specific binding,e.g., to fiber (protein A) and polymer matrix (protein B)
- ✓ high mass/area efficiency (1 g peptid can coat ca. 250 m²)
- programmable properties,
 e.g., activation of degrading enzymes at defined environmental conditions
- Adjustment of processes might be necessary to ensure biocompatible production technologies


Use Case: Programmed plastic degradation


Use Case: Programmed plastic degradation


Use Case: Programmed plastic degradation

Use Case: "Toolbox" for surface functionalization

"Protein Engineering allows us to tailor enzymes to create new materials, drive green chemistry, and make biopolymers that are biodegradable and environmentally friendly."

Frances H. Arnold, Nobel laureate 2018 "for the directed evolution of enzymes"

Your contact and partner regarding Biotechnology & Biomanufacturing

Dr. Thomke BergsInstitute of Biotechnology,
RWTH Aachen University

transbib@rwth-aachen.de

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

(1) Proteins can bind in specific fashion to various materials.

- (2) Only performance properties found in native proteins can be used or applied.
- (3) Apart from biological functions, chemical or physical functionalities can be used in peptide coatings.
- (4) Proteins can only be used in surface functionalization and applications.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

(1) Proteins can bind in specific fashion to various materials.

Correct! The material selection is not limited to natural (e.g., leaves) or biobased (e.g., paper) materials. Man-made materials such as plastics or metal alloys might as well be coated with functional peptides.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Proteins can bind in specific fashion to various materials.
- (2) Only performance properties found in native proteins can be used or applied.
- (3) Apart from biological functions, chemical or physical functionalities can be used in peptide coatings.
- (4) Proteins can only be used in surface functionalization and applications.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Proteins can bind in specific fashion to various materials.
- (2) Only performance properties found in native proteins can be used or applied.

False! With the help of *protein engineering* i.e., the customized functionalization of proteins, specific properties such as stability towards temperature, pH value, or the enzymatic activity can be tailored for desired applications.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Proteins can bind in specific fashion to various materials.
- (2) Only performance properties found in native proteins can be used or applied.
- (3) Apart from biological functions, chemical or physical functionalities can be used in peptide coatings.
- (4) Proteins can only be used in surface functionalization and applications.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Proteins can bind in specific fashion to various materials.
- (2) Only performance properties found in native proteins can be used or applied.
- (3) Apart from biological functions, chemical or physical functionalities can be used in peptide coatings.

Correct! By using bifunctional peptides, both the binding to bulk material and the function (e.g., hydrophilic, hydrophobic, anti-microbial) of the coating can be customized.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Proteins can bind in specific fashion to various materials.
- (2) Only performance properties found in native proteins can be used or applied.
- (3) Apart from biological functions, chemical or physical functionalities can be used in peptide coatings.
- (4) Proteins can only be used in surface functionalization and applications.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Proteins can bind in specific fashion to various materials.
- (2) Only performance properties found in native proteins can be used or applied.
- (3) Apart from biological functions, chemical or physical functionalities can be used in peptide coatings.
- (4) Proteins can only be used in surface functionalization and applications.

False! Functionalization with proteins (including enzymes) can also be used for functionalization IN materials. Examples include adhesion promoters in composite materials or embedded enzymes for improved degradation.

Note

This presentation and its contents are property of the TransBIB project and Institute of Biotechnolgy at RWTH Aachen University.

The contents may not be distributed or copied for use without prior consent.

© TransBIB 2025