

Bioeconomy in the plastics industry

Training on definitions, materials and technologies

Gefördert durch:

Discover – Develop – Connect

aufgrund eines Beschlusses des Deutschen Bundestages

Content

Bioplastics

- <u>Degradability</u>
- Ressources
- <u>Drop-in</u>
- Biobased carbon sources
- Biobased plastics
- Enzymatic degradation

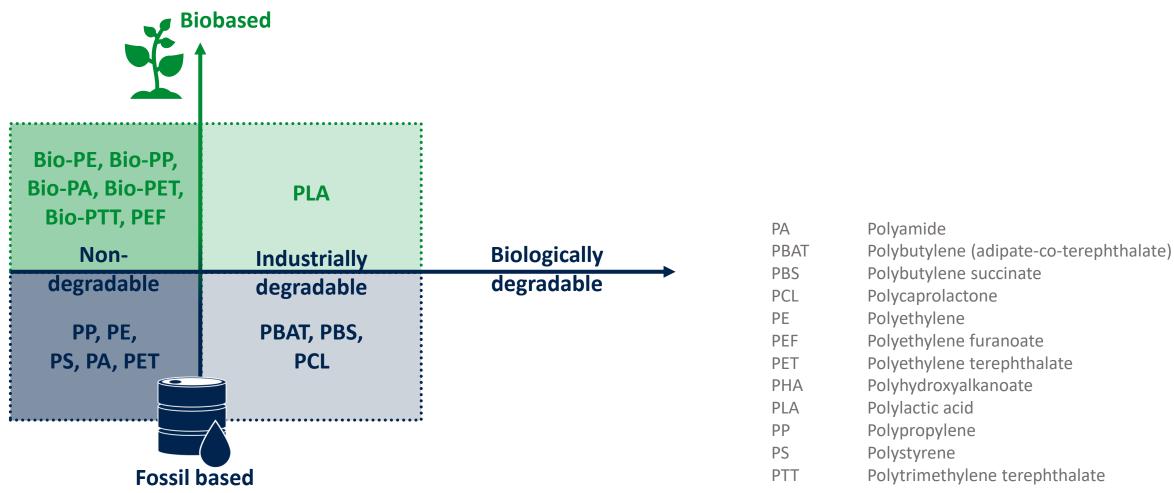
Modified biomass

- Starch
- <u>Cellulose</u>
- <u>Polyhydroxyalkanoates</u>

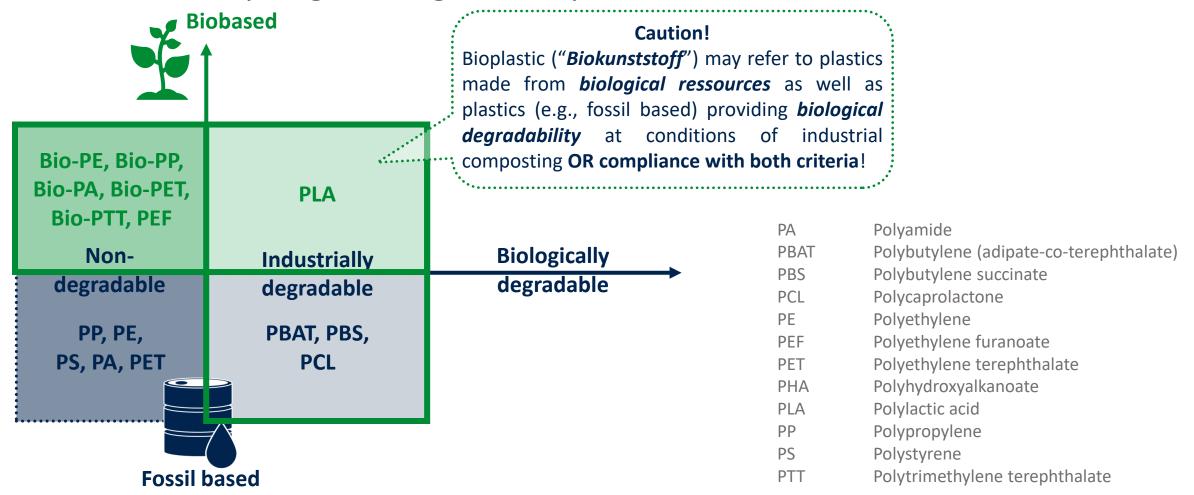
Bioplastics

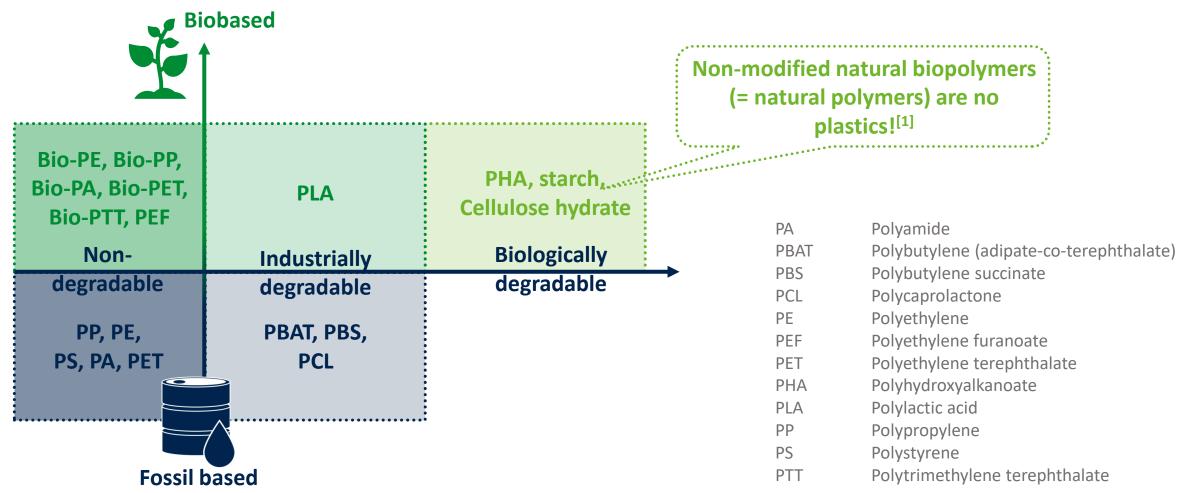
Origin, properties & use cases

Gefördert durch:


Discover – Develop – Connect

aufgrund eines Beschlusses des Deutschen Bundestages


Classification by origin & degradability


Classification by origin & degradability

Classification by origin & degradability

Classification by raw material

1. Generation (Edible)

Raw materials are obtained from edible biomass.

Starch: Corn, wheat,

potatoes, tapioca, etc.

Glucose: sugar cane, sugar beet,

etc.

Plant oil: Soybeans, sunflowers,

castor beans, rapeseed, oil

palms etc.

Classification by raw material

1. Generation (Edible)

Raw materials are obtained from edible biomass.

2. Generation (Non-edible)

Raw materials are obtained from nonedible biomass.

Starch: Corn, wheat,

potatoes, tapioca, etc.

Glucose: sugar cane, sugar beet,

etc.

Plant oil: Soybeans, sunflowers,

castor beans, rapeseed, oil

palms etc.

agriculture and forestry (e.g.,

bagasse, straw etc.)

Municipal waste: organic waste, waste water

etc.

Classification by raw material

1. Generation (Edible)

Raw materials are obtained from edible biomass.

2. Generation (Non-edible)

Raw materials are obtained from nonedible biomass.

3. Generation (Non-edible & bodenunabhängig)

Raw materials are obtained from non-edible, soil-independent cultures.

Starch: Corn, wheat,

potatoes, tapioca, etc.

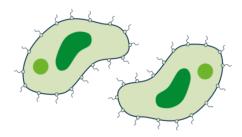

Glucose: sugar cane, sugar beet,

etc.

Plant oil: Soybeans, sunflowers,

castor beans, rapeseed, oil

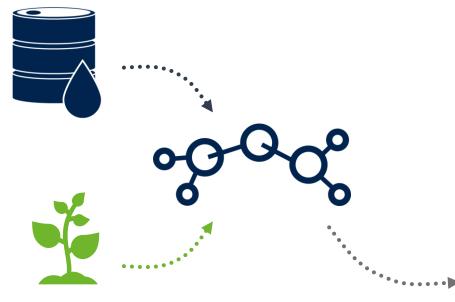
palms etc.


agriculture and forestry (e.g.,

bagasse, straw etc.)

Municipal waste: organic waste, waste water

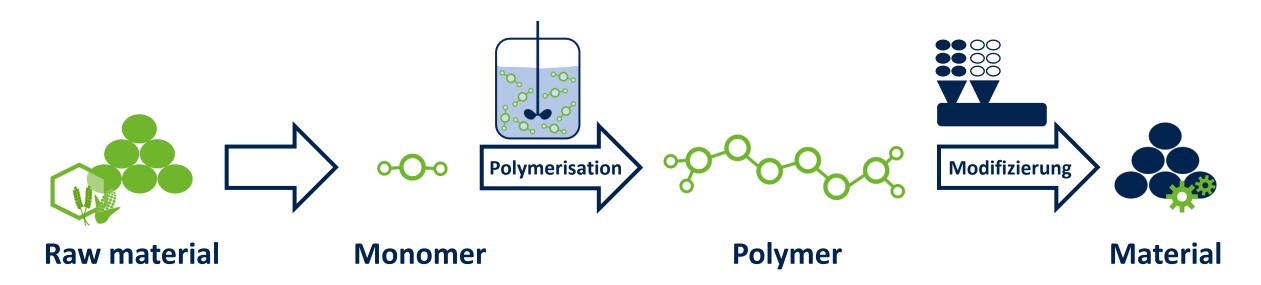
etc.


Microorganisms: Microalgae, bacteria, fungi, yeasts etc.

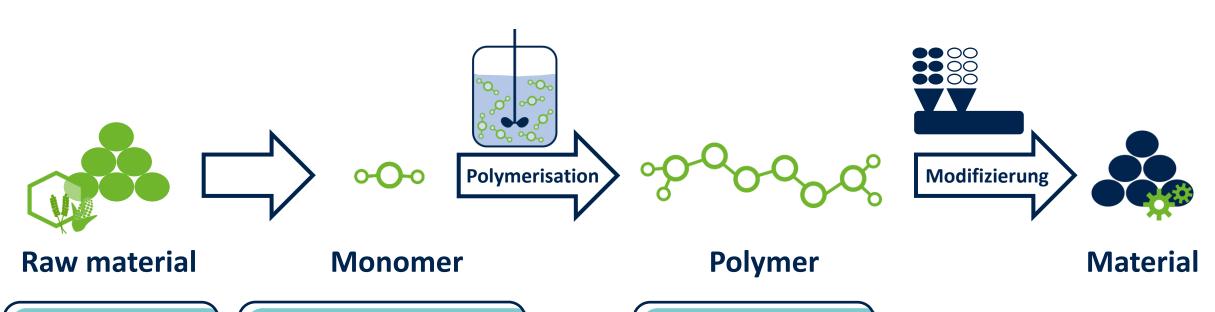
Bioplastics in the process chain

The basic chemicals for the production of drop-in bioplastics are produced from **renewable raw materials** (renewable sources, e.g., sugar cane) instead of petrochemicals (fossil source).

Drop-in bioplastics are plastics, whose **chemical structure is identical** to that of conventional (petrochemical) plastics.



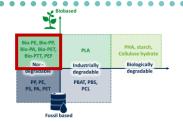
The same machines and processes can be used for further processing into end products as for their fossil-based counterparts.


Drop-in solutions

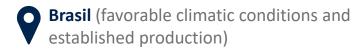
Drop-in solutions

Biobased hydrocarbons (e.g., oils, fats)

Polymerizable biomass (e.g., lactides, diacids)


(e.g., starch, cellulose, rubber)

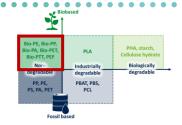
Biological polymers



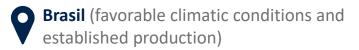
Biobased carbon sources

USA (generally where sugar cane cannot be grown/harvested)

Efficiency Prior transformation of starch into sugar necessary
 Food competition, especially due to misguided subsidies for the fuel industry

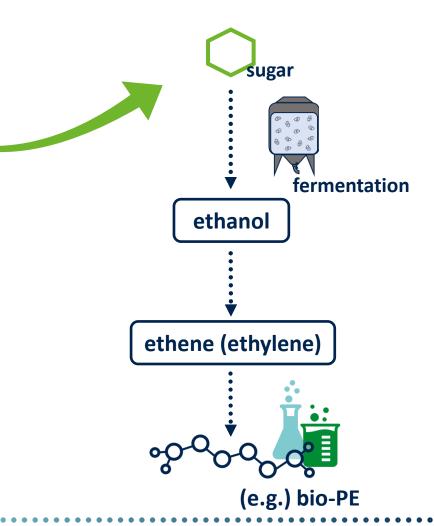

Europe (suitable for temperate climate)

High yield per area



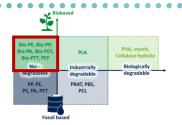
Biobased carbon sources

USA (generally where sugar cane cannot be grown/harvested)

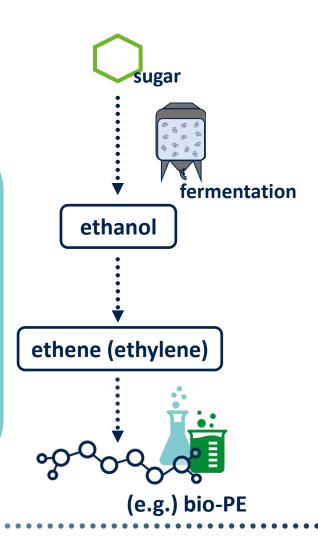

Efficiency Prior transformation of starch into sugar necessary
Food competition, especially due to misguided

subsidies for the fuel industry

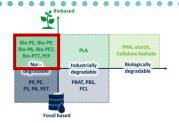
Europe (suitable for temperate climate)


High yield per area

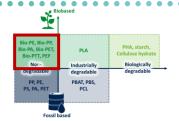
Biobased carbon sources



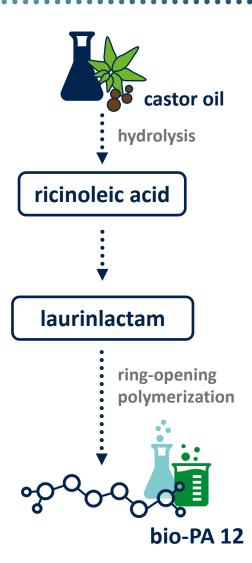
sugar beet


- Raw material availability: Regionality (short transport routes) and available quantity of raw material have a decisive influence on the costs and implementation of a transformation
- Sustainability: the use of non-edible biomass
 (2. generation) and side or waste streams
 limits fear of food security and land use
- CO₂ balance: biobased polymers such as bio-PE possess significantly lower CO₂ footprints, than their fossil-based counterparts

Biobased plastics | PA

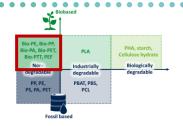

Polyamides (technical thermoplastics, nylon)

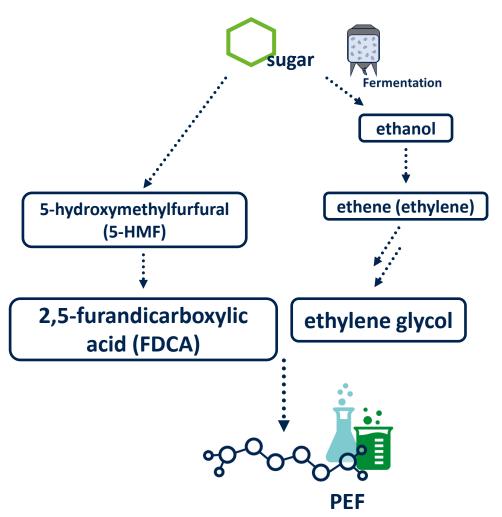
- PAs are formally produced from condensation of a carboxylic acid and an amine (amide bond)
- Industrially most relevant are PA 6.6 und PA 12
- high strength and rigidity with good abrasion and wear resistance
- **divers applications,** e.g., as fibers



Biobased plastics | PA

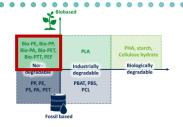
Polyamides (technical thermoplastics, nylon)


- PAs are formally produced from condensation of a carboxylic acid and an amine (amide bond)
- Industrially most relevant are PA 6.6 und PA 12
- high strength and rigidity with good abrasion and wear resistance
- **divers applications,** e.g., as fibers

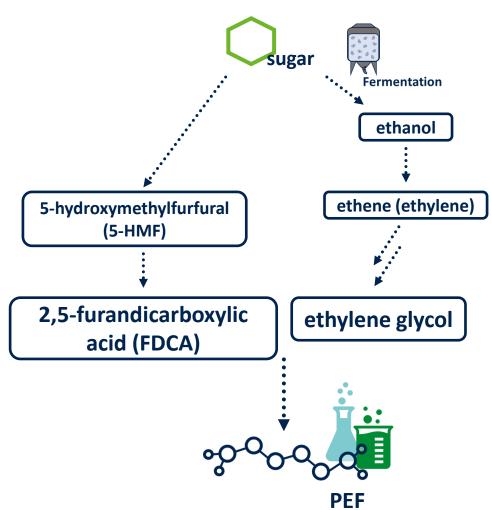


Biobased plastics | PEF

Polyethylenfuranoate (PEF) – biobased PET-alternative (technical thermoplastics)


- Aromatic polyester: comparable with PET
- Educts: 2,5-furandicarboxylic acid (FDCA) and ethylene glycol (MEG)
- FDCA is produced from sugar (fructose)
- Ethylene glycol could be synthesized from sugar as well to a produce a fully biobased PEF
- Industrial application as bottles, films and fibers

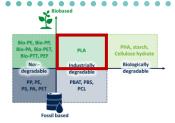
Biobased plastics | PEF

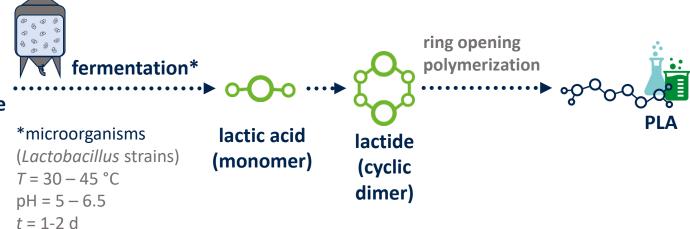


Polyethylenfuranoate (PEF) – biobased PET-alternative (technical thermoplastics)

- Aromatic polyester: comparable with PET
- Educts: 2,5-furandicarboxylic acid (FDCA) and ethylene glycol (MEG)
- FDCA is produced from sugar (fructose)
- Ethylene glycol could be synthesized from sugar as well to a produce a fully biobased PEF
- Industrial application as bottles, films and fibers

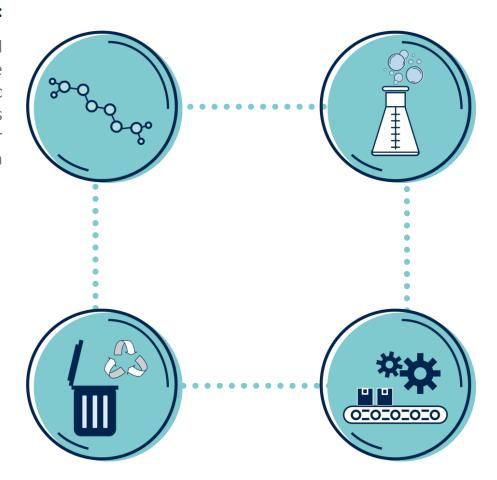
Comparison with PET


- Better O₂-, CO₂- and H₂O-barrier properties
- High tensile strength
- Low melting point
- Higher glass temperature



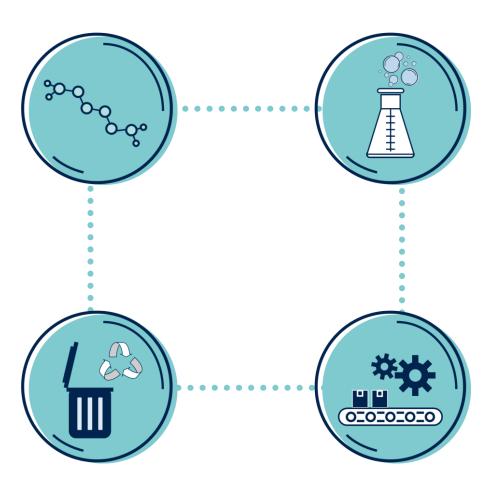
Biobased plastics | PLA

Polylactid (technical thermoplastics)


- PLA belongs to the polyesters
- Production is usually based on starch-rich plants
- Extracted starch is converted into sugar (glucose) that is transformed into lactic acid (monomer) by fermentation

Chemical properties:

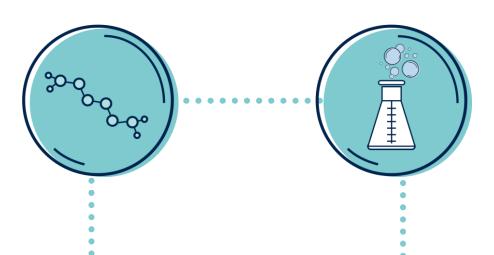
Lactic acid is a hydroxycarboxylic acid (an acid group and an alcohol in the molecule structure). It occurs in two enantiomeric forms: **L- and D-lactic acid**. PLA has **hydrophobic properties** due to its nonpolar polymer chain, but is less hydrophobic than PE.



Chemical properties:

Lactic acid is a hydroxycarboxylic acid (an acid group and an alcohol in the molecule structure). It occurs in two enantiomeric forms: **L- and D-lactic acid**. PLA has **hydrophobic properties** due to its nonpolar polymer chain, but is less hydrophobic than PE.

Production:


Lactic acid monomer (L- and D-lactic acid) can be produced by **fermentation from carbohydrates** such as sugar or starch. Polymerization takes place either by **direct condensation or ring opening condensation**, starting from lactide (dimer).

Chemical properties:

Lactic acid is a hydroxycarboxylic acid (an acid group and an alcohol in the molecule structure). It occurs in two enantiomeric forms: **L- and D-lactic acid**. PLA has **hydrophobic properties** due to its nonpolar polymer chain, but is less hydrophobic than PE.

Production:

Lactic acid monomer (L- and D-lactic acid) can be produced by **fermentation from carbohydrates** such as sugar or starch. Polymerization takes place either by **direct condensation or ring opening condensation**, starting from lactide (dimer).

Degradability:

PLA is **not biodegradable or only to insufficient degree at ambient temperature** or uncontrolled environmental conditions! **Industrial composting conditions** are required instead. In addition, the degree of crystallinity affects biodegradability.

Chemical properties:

Lactic acid is a hydroxycarboxylic acid (an acid group and an alcohol in the molecule structure). It occurs in two enantiomeric forms: **L- and D-lactic acid**. PLA has **hydrophobic properties** due to its nonpolar polymer chain, but is less hydrophobic than PE.

00000000

Production:

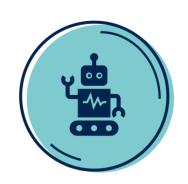
Lactic acid monomer (L- and D-lactic acid) can be produced by **fermentation from carbohydrates** such as sugar or starch. Polymerization takes place either by **direct condensation or ring opening condensation**, starting from lactide (dimer).

Processing:

Modifications are possible via the ratio of PLLA and PDLA, the **chain length** of the polymers and their **crystallinity** as well as through adition of **additives**, **fillers or reinforcing materials**. The **processing temperature** is approximately **150 – 180 °C**.

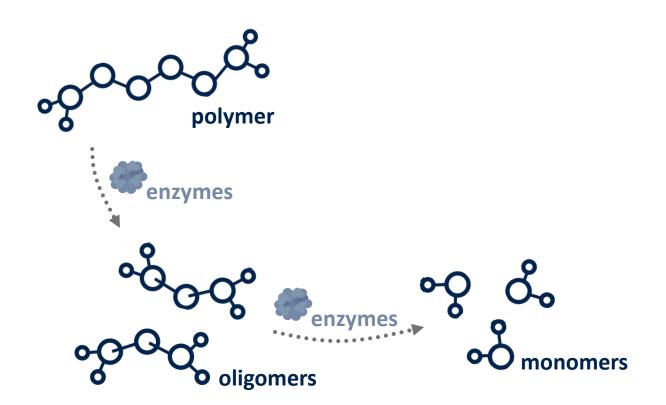
Degradability:

PLA is **not biodegradable or only to insufficient degree at ambient temperature** or uncontrolled environmental conditions! **Industrial composting conditions** are required instead. In addition, the degree of crystallinity affects biodegradability.



Properties & applications of PLA

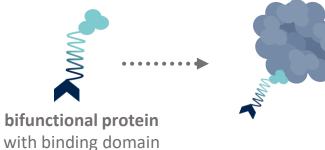
- Non-toxic
- Biocompatible
- Moderate barrier properties against
 water vapor (slightly lower than PET) can be improved as a blend or with a coating
- Transparent
- Good mechanical strength -> but very brittle



- Suitable for extrusion and injection molding: films, foils, fibers and sheets
- 3D printing (additive manufacturing)
- Packaging for food contact (e.g., for disposable packaging)
- Medical implants

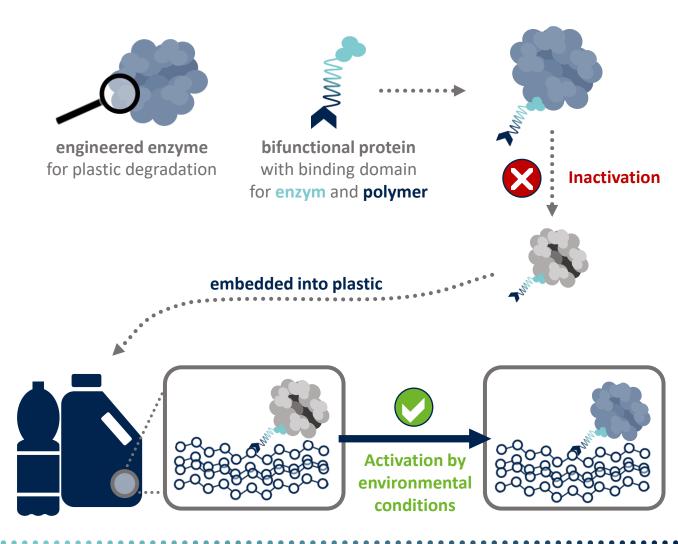
Enzymatic plastics degradation

- Polymers such as PET and PLA, which contain ester bonds
 in their chemical structure, can be degraded
 enzymatically.
- Various enzymes from cutinases, lipases, laccases, esterases and PETases are capable of hydrolyzing ester bonds.
- They originate from various microorganisms (bacteria, algae, fungi)
- During hydrolysis, the molecular weight decreases continuously: first oligomers (short chain polymers) are formed followed by degradation to monomers.
- Biobased polymers can ultimately be degraded to CO₂ and H₂O (e.g., PLA).

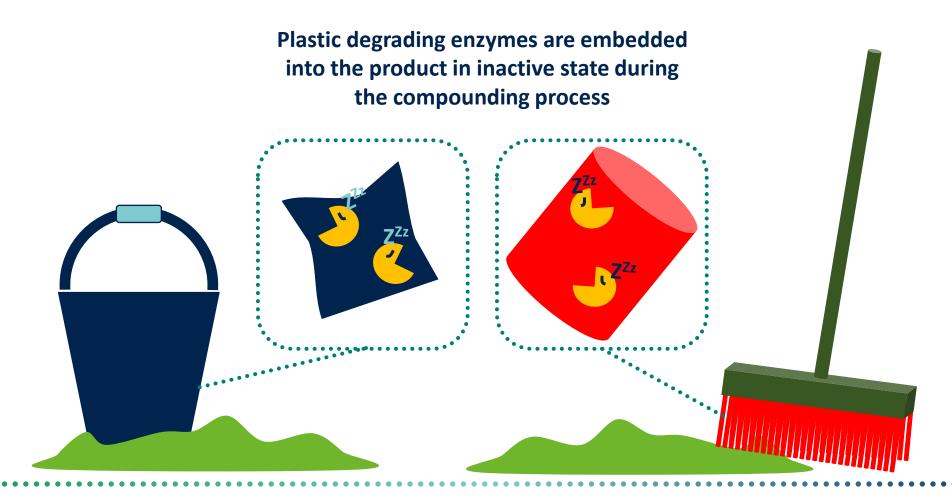


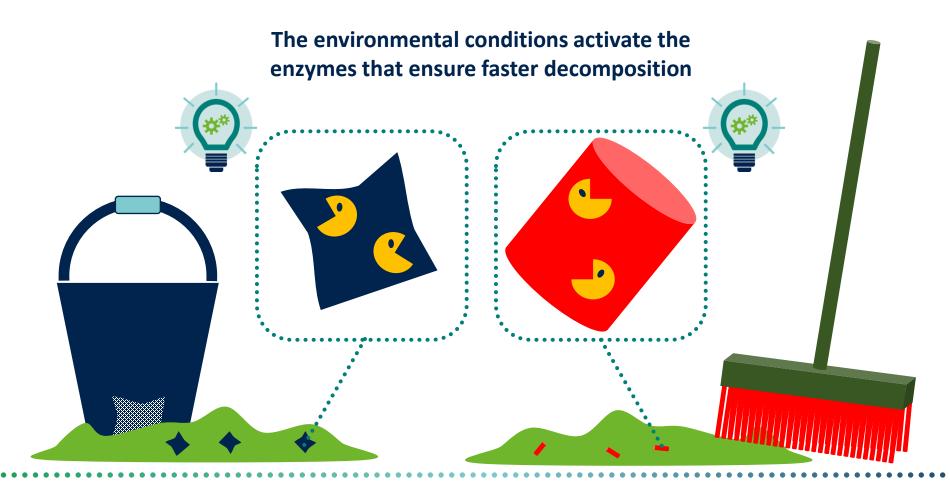
Enzymatic plastics degradation

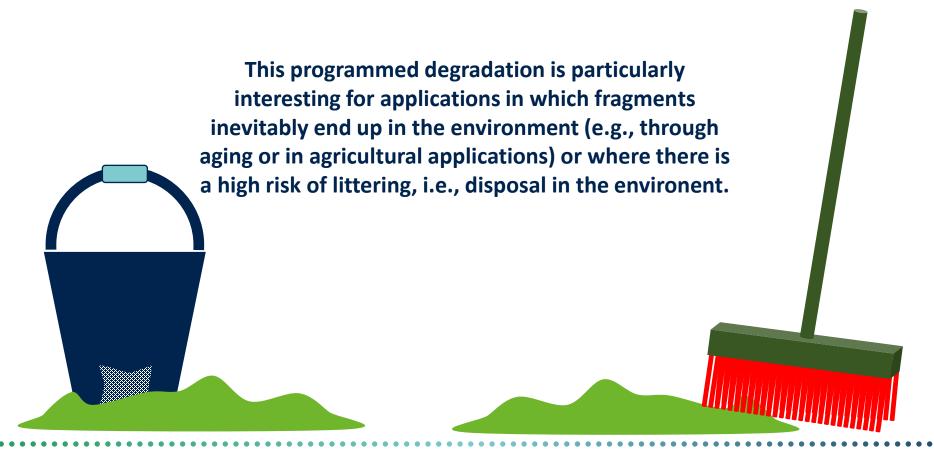
- The activity of enzymes for degradation can be tailored by **Protein Engineering**.
- A material-specific binding of the enzymes^[1] to the polymer can further increase degradation.^{[2],[3]}

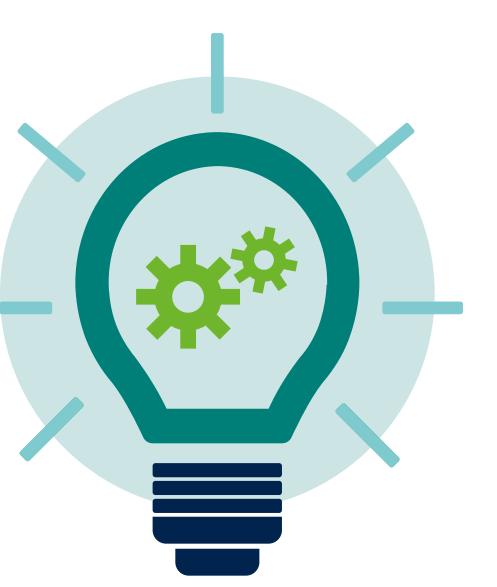


Enzymatic plastics degradation


- The activity of enzymes for degradation can be tailored by *Protein Engineering*.
- A material-specific binding of the enzymes^[1] to the polymer can further increase degradation.^{[2],[3]}
- Enzymes can be introduced into material in an inactive form to ensure programmed degradation under specific conditions.
- Challenges include the prevailing environmental conditions, the crystallinity of the polymer and slow degradation, which contrasts with the rapidly growing amount of plastic waste.


Use Case: Programmed plastic degradation


Use Case: Programmed plastic degradation

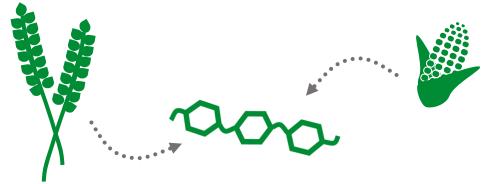


Use Case: Programmed plastic degradation

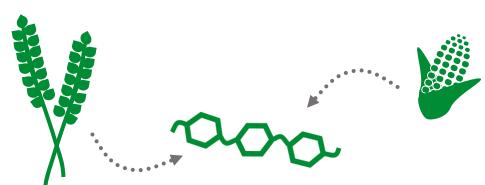
Modified biomass

Properties, processing and recycling

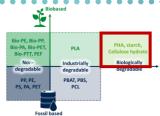
Gefördert durch:


Discover – Develop – Connect aufgrund eines Beschlusses des Deutschen Bundestages

Natural, biobased & biodegradable



- A wide variety of **natural polymers** exists in nature.
- By definition, (chemically) unmodified natural polymers are not plastic! (and therefore do not form microplastics)^[1].
- Often, these polymers are polysaccharides (sugar polymers)
- Natural polymers provide an inherent biological degradability.

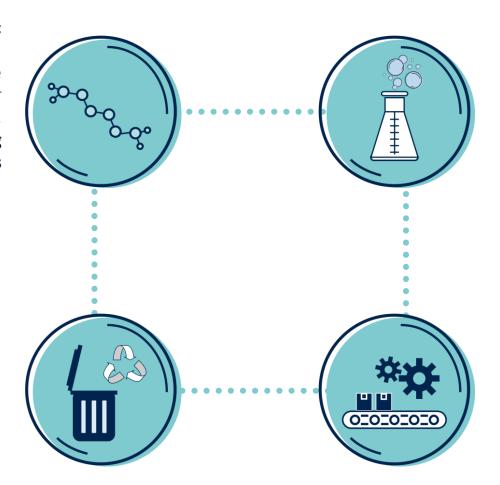


Natural, biobased & biodegradable

- A wide variety of natural polymers exists in nature.
- By definition, (chemically) unmodified natural polymers are not plastic! (and therefore do not form microplastics)^[1].
- Often, these polymers are polysaccharides (sugar polymers)
- Natural polymers provide an inherent biological degradability.

Industrial applications include for example:

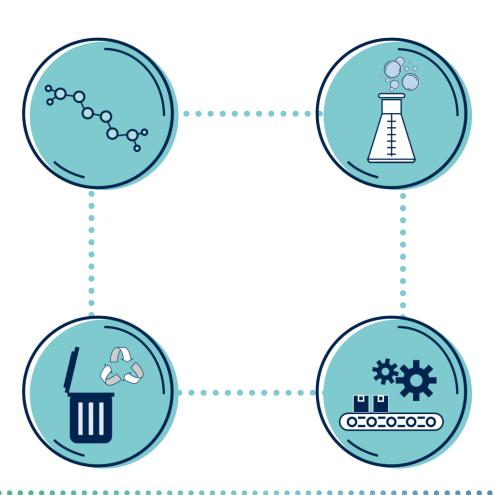
- **Pectin** (sugar polymer from plant-based raw materials; apple or beet pulp) is used as a gelling agent.
- Chitin (sugar polymer found in fungi or shells of insects/crustaceans) serves as basis for chitosan, which is suitablefor production of fibers, foams and films.
- Cellulose from wood and cellulose-rich plants these include bast plants such as hemp, flax, kenaf and ramie; cotton consists almost entirely of cellulose
- Starch Sugar polymer from starch-rich plants such as corn and potatoes



Thermoplastic starch (TPS)

Chemical properties:

Starch consists of **sugar molecules** that are linked either as linear chains (amylose) or highly branched structures (amylopectin). Due to their **moisture-absorbing properties**, starch is usually **used in blends** of starch and additives (e.g., glycerin).



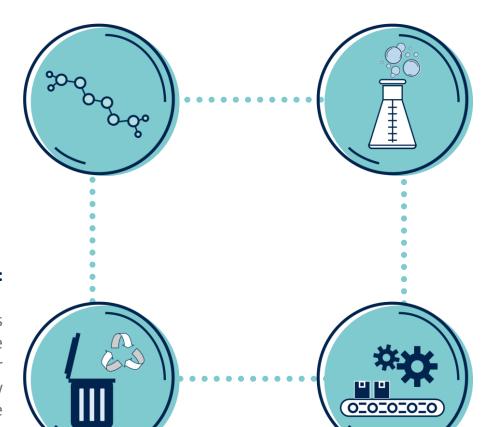
Thermoplastic starch (TPS)

Chemical properties:

Starch consists of **sugar molecules** that are linked either as linear chains (amylose) or highly branched structures (amylopectin). Due to their **moisture-absorbing properties**, starch is usually **used in blends** of starch and additives (e.g., glycerin).

Production:

Starch can be extracted from various plants (e.g., corn, wheat, potatoes, tapioca). The extracted starch granules are **destructured** by **adding water** and **thermomechanical processing** in the extruder. Both water content and shear influence the mechanical properties of the product.



Thermoplastic starch (TPS)

Chemical properties:

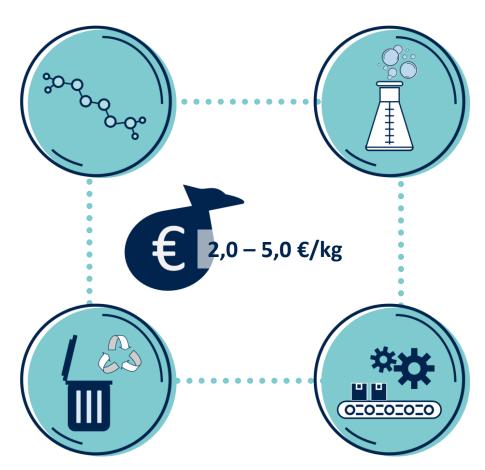
Starch consists of **sugar molecules** that are linked either as linear chains (amylose) or highly branched structures (amylopectin). Due to their **moisture-absorbing properties**, starch is usually **used in blends** of starch and additives (e.g., glycerin).

Production:

Starch can be extracted from various plants (e.g., corn, wheat, potatoes, tapioca). The extracted starch granules are **destructured** by **adding water** and **thermomechanical processing** in the extruder. Both water content and shear influence the mechanical properties of the product.

Disposal / recycling:

As a **natural biopolymer**, starch provides inherent **biodegradability**. Products made from **pure starch** are therefore suitable for **home composting**. Starch blends show accelerated decomposition into fragments due to degradation/decomposition of the starch matrix.



Thermoplastic starch (TPS)

Chemical properties:

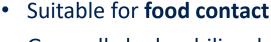
Starch consists of **sugar molecules** that are linked either as linear chains (amylose) or highly branched structures (amylopectin). Due to their **moisture-absorbing properties**, starch is usually **used in blends** of starch and additives (e.g., glycerin).

Production:

Starch can be extracted from various plants (e.g., corn, wheat, potatoes, tapioca). The extracted starch granules are **destructured** by **adding water** and **thermomechanical processing** in the extruder. Both water content and shear influence the mechanical properties of the product.

Processing:

The processing temperature is approx. 120 – 180 °C (use of plasticizers such as glycerin is necessary). At higher temperatures, discoloration and degradation must be expexted. For modified starch and starch blends, the processing temp. Varies depending on the type of modification/polymer added (up to max. 200 °C). Extrusion is carried out at 140 – 190 °C.

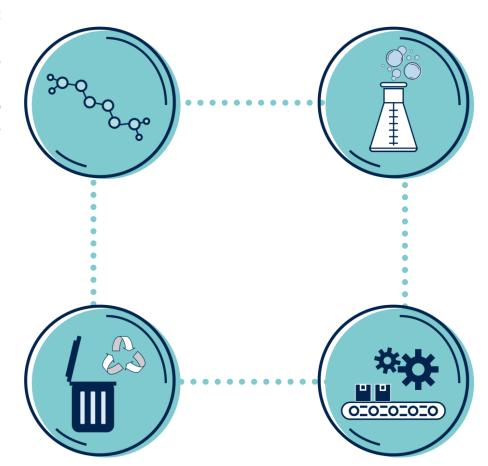

Disposal / recycling:

As a **natural biopolymer**, starch provides inherent **biodegradability**. Products made from **pure starch** are therefore suitable for **home composting**. Starch blends show accelerated decomposition into fragments due to degradation/decomposition of the starch matrix.

Properties & applications of TPS

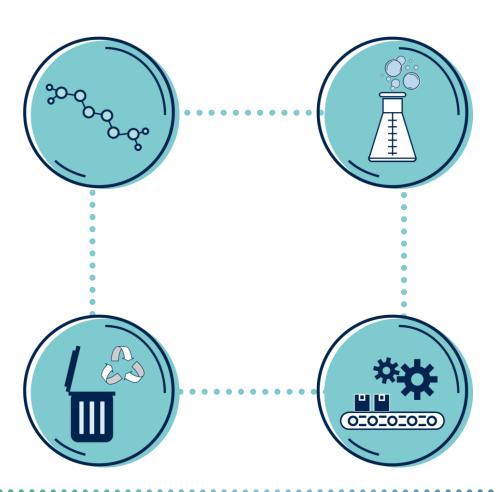
- Generally hydrophilic; absorbs moisture/water vapor
- Hydrophobicity can be increased through modification
- Relatively low mechanical strength;
 brittle
- Modifications can improve/increase mechanical strength
- Suitable for blends with other polymers
- Can be used in injection molding

- Film/foil: food packaging; shopping bags
- Coatings
- Agriculture
 Mulch films
- Single use/disposable applications
 (e.g., disposable tableware and cutlery)
- Foam packaging:
 - Replacement of polystyrene
 - foams
 - Packaging chips



Chemical properties:

If the chemical structure remains unmodified, the material is called **regenerated cellulose**; if it is altered, it is referred to as **derivative**. Typical examples are cellulose hydrate (cellulose film) and cellulose acetate (thermoplastic).

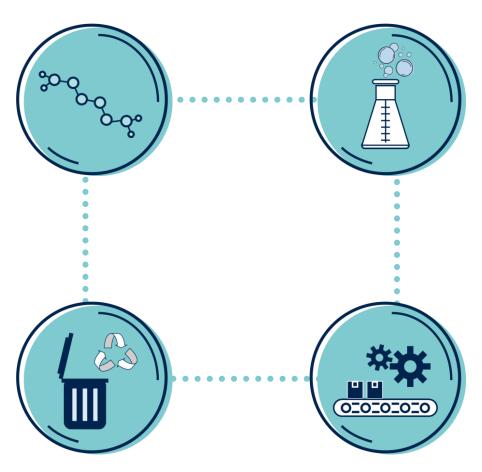


Chemical properties:

If the chemical structure remains unmodified, the material is called **regenerated cellulose**; if it is altered, it is referred to as **derivative**. Typical examples are cellulose hydrate (cellulose film) and cellulose acetate (thermoplastic).

Production:

Cellulose is a component of plant cells and is therefore obtained from biomass such as wood and straw. Cellulose acetate is produced by partial acetylation using acetic acid (anhydride). Microcristalline cellulose is produced by the hydrolysis of purified cellulose with strong acids. Nanocellulose is cellulose (fibers, crystals) that has been mechanically or enzymatically processed to nanodimensions.


Chemical properties:

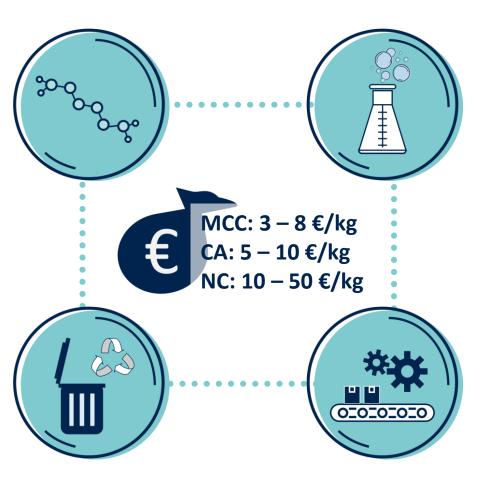
If the chemical structure remains unmodified, the material is called **regenerated cellulose**; if it is altered, it is referred to as **derivative**. Typical examples are cellulose hydrate (cellulose film) and cellulose acetate (thermoplastic).

Cellulose derivatives can be recycled, although the quality and length of the fibers usually decrease with each cycle.

Celluloses (regenerates) are suitable for home composting and industrial composting as they can be degraded by various microorganisms and enzymes.

Production:

Cellulose is a component of plant cells and is therefore obtained from biomass such as wood and straw. Cellulose acetate is produced by partial acetylation using acetic acid (anhydride). Microcristalline cellulose is produced by the hydrolysis of purified cellulose with strong acids. Nanocellulose is cellulose (fibers, crystals) that has been mechanically or enzymatically processed to nanodimensions.


Chemical properties:

If the chemical structure remains unmodified, the material is called **regenerated cellulose**; if it is altered, it is referred to as **derivative**. Typical examples are cellulose hydrate (cellulose film) and cellulose acetate (thermoplastic).

Disposal / recycling:

Cellulose derivatives can be recycled, although the quality and length of the fibers usually decrease with each cycle.

Celluloses (regenerates) are suitable for home composting and industrial composting as they can be degraded by various microorganisms and enzymes.

Production:

Cellulose is a component of plant cells and is therefore obtained from biomass such as wood and straw. Cellulose acetate is produced by partial acetylation using acetic acid (anhydride). Microcristalline cellulose is produced by the hydrolysis of purified cellulose with strong acids. Nanocellulose is cellulose (fibers, crystals) that has been mechanically or enzymatically processed to nanodimensions.

Processing:

Depending on the modification of cellulose, the **processing temperature** is approx. **80 – 200 °C**. Cellulose does not show a sharp melting point, but decomposes at ca. 260 °C.

Properties & applications of cellulose

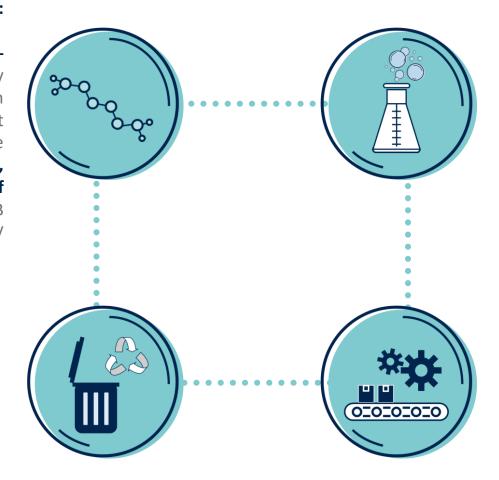
- Suitable for food contact
- Colorless, transparent appearance as cellulose hydrate
- Permeable to water vapor

- Film/foil (cellulose hydrate)*: food packaging; prevents condensation
- Coatings
- Medical applications (e.g. wound dressings)
- Fibers:

Textiles

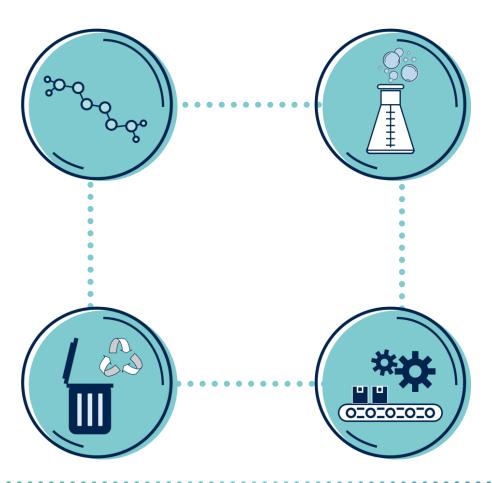
Filters

Composite materials


^{*} Known former brand name "Cellophan"

Chemical properties:

PHAs are water-insoluble, linear biopolyesters, that are formed by many bacteria as reserve substance for carbon and energy (comparable to human fat deposits). Since they can be formed on the basis of different hydroxycarboxylic acids, PHA is the generic term for a class of substances that includes e.g., PHB (polyhydroxybutyrate) and PHV (polyhydroxyvaleric acid).



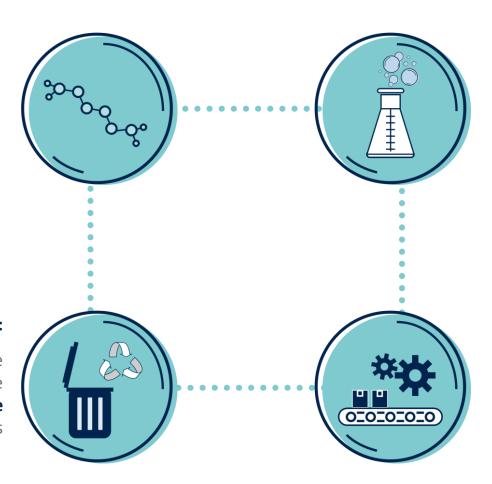
Chemical properties:

PHAs are water-insoluble, linear biopolyesters, that are formed by many bacteria as reserve substance for carbon and energy (comparable to human fat deposits). Since they can be formed on the basis of different hydroxycarboxylic acids, PHA is the generic term for a class of substances that includes e.g., PHB (polyhydroxybutyrate) and PHV (polyhydroxyvaleric acid).

Production:

Generally, no polymerization but an **extraction from cell mass** in the bioreactor is performed.

The type of **PHA** is influenced by the **microorganisms used**, the **biomass (feed)** and the process parameters.



Chemical properties:

PHAs are water-insoluble, linear biopolyesters, that are formed by many bacteria as reserve substance for carbon and energy (comparable to human fat deposits). Since they can be formed on the basis of different hydroxycarboxylic acids, PHA is the generic term for a class of substances that includes e.g., PHB (polyhydroxybutyrate) and PHV (polyhydroxyvaleric acid).

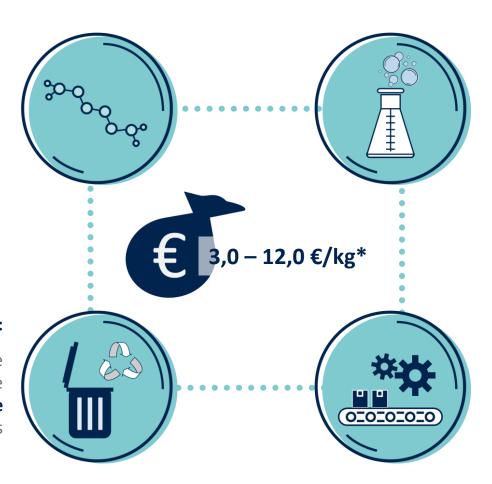
Disposal / recycling:

Due to their ester bonds, PHAs are biodegradable (see also surgical suture material). They are suitable for home composting and industrial composting as well as for soil and marine environment.

Production:

Generally, no polymerization but an **extraction from cell mass** in the bioreactor is performed.

The type of **PHA** is influenced by the **microorganisms used**, the **biomass (feed)** and the process parameters.



Chemical properties:

PHAs are water-insoluble, linear biopolyesters, that are formed by many bacteria as reserve substance for carbon and energy (comparable to human fat deposits). Since they can be formed on the basis of different hydroxycarboxylic acids, PHA is the generic term for a class of substances that includes e.g., PHB (polyhydroxybutyrate) and PHV (polyhydroxyvaleric acid).

Disposal / recycling:

Due to their ester bonds, PHAs are biodegradable (see also surgical suture material). They are suitable for home composting and industrial composting as well as for soil and marine environment.

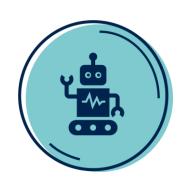
Production:

Generally, no polymerization but an **extraction from cell mass** in the bioreactor is performed.

The type of **PHA** is influenced by the **microorganisms used**, the **biomass (feed)** and the process parameters.

Processing:

Suitable for thermoplastic applications in extrusion and injection molding at temperatures of approx. 160 – 190 °C. Pure PHB has a high degree of crystallinity and i therefore brittle and rigid. Copolymers, e.g., with PHV, increase elasticity and improve processability.



Properties & applications of PHA

- Non toxic
- Biocompatible
- Good resistance to moisture
- Low permeability to water
- Aroma barrier properties
- Good resistance to UV radiation
- Suitable for injection molding
- Suitable for extrusion (films, hollow bodies)

- Food packaging/disposabel packaging
- Compostable containers
- Medical applications:
 - Release of active substances
 - Implants
 - antimicrobial wound sutures
- Hygiene products
- Cosmetics (microplastic substitute, thickening agent)

"Bioplastics have the potential to play a significant role in reducing the environmental impact of plastics. However, the industry needs a clear and supportive policy framework to reach its full potential."

Hasso von Pogrell,
Managing Director of European Bioplastics

- (1) Not only biomass and agricultural waste, but also cell components can serve as raw materials.
- (2) The use of biomass in the plastics and packaging industry is a new trend.
- (3) Biomass is only suitable for the production of films.
- (4) PHA is the generic term for a class of polymers that includes e.g., PHB and PHV.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

(1) Not only biomass and agricultural waste, but also cell components can serve as raw materials.

Correct! PHAs (polyhydroxyalkanoates) are produced by various microorganisms (bacteria) as energy storage. The type of PHA and the possibility of copolymer formation depend on the bacteria used and, above all, on the fed substrate (e.g., various sugars, short-chain acids or alcohols such as glycerin).

- (1) Not only biomass and agricultural waste, but also cell components can serve as raw materials.
- (2) The use of biomass in the plastics and packaging industry is a new trend.
- (3) Biomass is only suitable for the production of films.
- (4) PHA is the generic term for a class of polymers that includes e.g., PHB and PHV.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Not only biomass and agricultural waste, but also cell components can serve as raw materials.
- (2) The use of biomass in the plastics and packaging industry is a new trend.

False! Cellulose hydrate has been used as packaging film for the food industry since the early 20th century. However, awareness of the finite nature and environmental impact of using non-renewable fossil raw materials is now leading to increased attention and a search for bio-based materials.

- (1) Not only biomass and agricultural waste, but also cell components can serve as raw materials.
- (2) The use of biomass in the plastics and packaging industry is a new trend.
- (3) Biomass is only suitable for the production of films.
- (4) PHA is the generic term for a class of polymers that includes e.g., PHB and PHV.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Not only biomass and agricultural waste, but also cell components can serve as raw materials.
- (2) The use of biomass in the plastics and packaging industry is a new trend.
- (3) Biomass is only suitable for the production of films.

False! Biomass can be used to manufacture many products in the plastics and packaging industry. As so-called drop-in solutions, the substances used chemically identical to their fossil-based counterparts.

- (1) Not only biomass and agricultural waste, but also cell components can serve as raw materials.
- (2) The use of biomass in the plastics and packaging industry is a new trend.
- (3) Biomass is only suitable for the production of films.
- (4) PHA is the generic term for a class of polymers that includes e.g., PHB and PHV.

- (1) Not only biomass and agricultural waste, but also cell components can serve as raw materials.
- (2) The use of biomass in the plastics and packaging industry is a new trend.
- (3) Biomass is only suitable for the production of films.
- (4) PHA is the generic term for a class of polymers that includes e.g., PHB and PHV. Correct! Polyhydroxyalkanoates (PHAs) include polyhydroxybutyrate (PHB) and polyhydroxyvaleric acid (PHV), among others. They are produced by fermentation and belong to the (poly)hydroxycarboxylic acids.

Note

This presentation and its contents are property of the TransBIB project, SKZ plastics institute, and Institute of Biotechnolgy at RWTH Aachen University.

The contents may not be distributed or copied for use without prior consent.

© TransBIB 2025