

Fiber-reinforced plastics

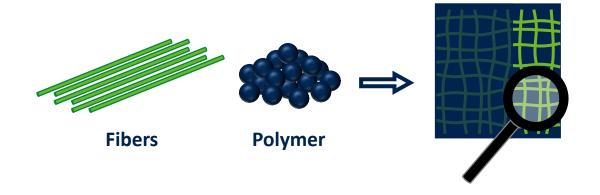
Composite materials – conventional & based on natural fibers

Gefördert durch:

Discover – Develop – Connect

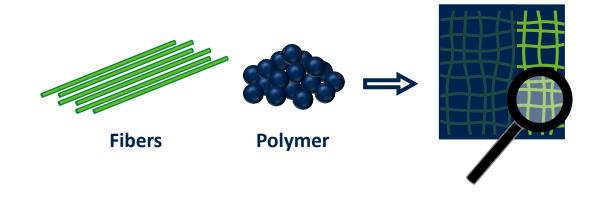
aufgrund eines Beschlusses des Deutschen Bundestages

Content


Composite materials

- <u>Fundamentals</u>
- Sustainability
- Types of fibers
 - Plant fibers
 - Fiber lenghts
- Processing
- <u>Technologies and examples</u>

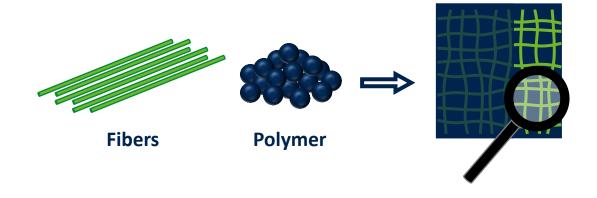
Fundamentals

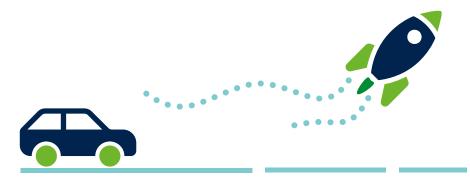


- Plastics and polymers in general can be reinforced in terms of their mechanical strength and stiffness.
- Reinforcement is achieved by embedding fibers in the polymer matrix to create a composite material (FRC = fibrereinforced composite).
- Typical fibers used in industrial applications are carbon or glass fibers and polymer fibers (e.g., aramid).

Fundamentals

- Plastics and polymers in general can be reinforced in terms of their mechanical strength and stiffness.
- Reinforcement is achieved by embedding fibers in the polymer matrix to create a composite material (FRC = fibrereinforced composite).
- Typical fibers used in industrial applications are carbon or glass fibers and polymer fibers (e.g., aramid).

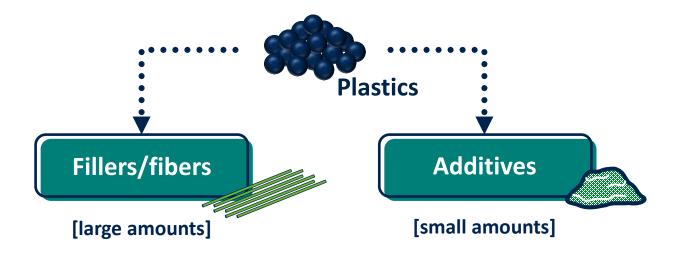

- The fibers reinforce the material, while the polymer matrix holds them together, protects and **distributes** mechanical stress.
- Fiber-reinforced polymer composites are characterized by high load-baring capacity and mechanical strength at low weight (good strength-toweight ratio) and good durability.



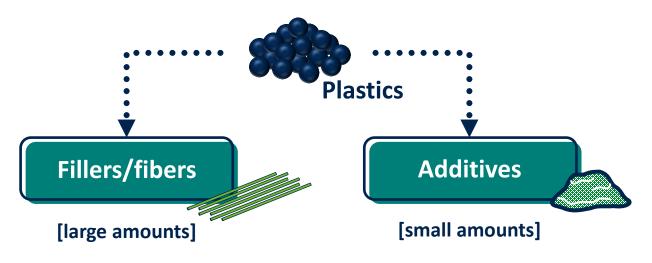
Fundamentals

- Plastics and polymers in general can be reinforced in terms of their mechanical strength and stiffness.
- Reinforcement is achieved by embedding fibers in the polymer matrix to create a composite material (FRC = fibrereinforced composite).
- Typical fibers used in industrial applications are **carbon or glass fibers and polymer fibers** (e.g., aramid).

- The fibers reinforce the material, while the polymer matrix holds them together, protects and **distributes** mechanical stress.
- Fiber-reinforced polymer composites are characterized by high load-baring capacity and mechanical strength at low weight (good strength-toweight ratio) and good durability.



 Typical applications are in automotive, aerospace, construction, and the sports industry, where high material strength and low weight are required simultaneously.


Filler vs. additive

Filler vs. additive

- Lime/chalk Waste:
- Soot Wood flour
- Fibers

- Duromers

- Protective agents Plasticizers
- Stabilizers

- Color pigments
- Flame retardant
- Adhesion promoter...

To achieve an optimal composite material, both the compatibility of matrix and fiber must be ensured and the production **process** must be optimized in order to control, e.g., the alignment and distribution of the fibers.


Sustainability

 Carbon and glass fiber production generates large amounts of CO₂.

• The production of these fibers consumes large

amounts of energy.

Sustainability

- Carbon and glass fiber production generates large amounts of CO₂.
- The production of these fibers consumes large amounts of energy.

- The **recycling** of fiber-reinforced composite materials poses a **major challenge**.
- The strong bond between fibers and matrix makes subsequent separation challenging -> there is a high risk of destroying the fiber and contaminating the polymer material.
- Recycling methods are currently still being developed and are not universally applicable.
- Many processes (e.g., mechanical and thermal recycling) are expensive and energy-intensive.

Plant fibers

Trunk (wood)

Bark

• • Stems / stalks

• Leaves

Fruits / seeds

Plant fibers

Animal fibers

Trunk (wood)

Bristles / coarse hair

Bark

Wool

Stems / stalks

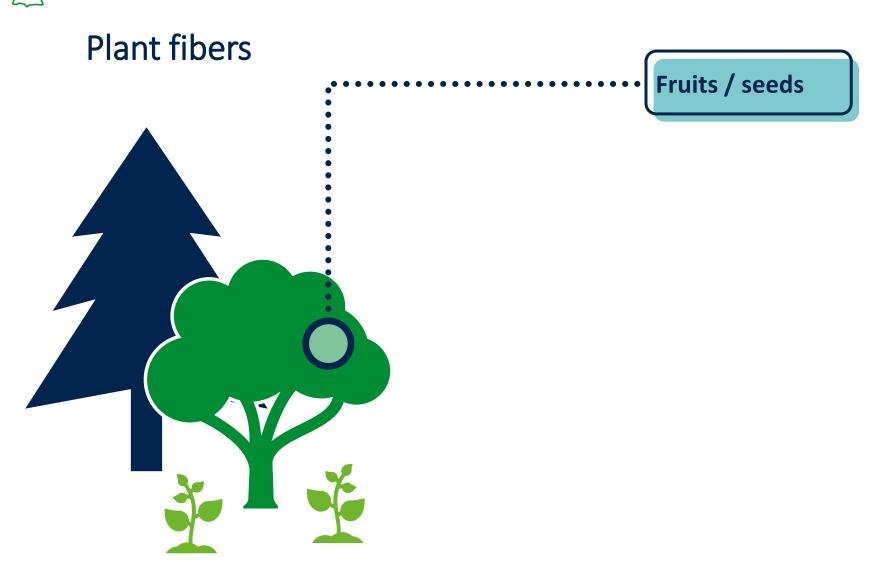
Fine hair

Leaves

Silk

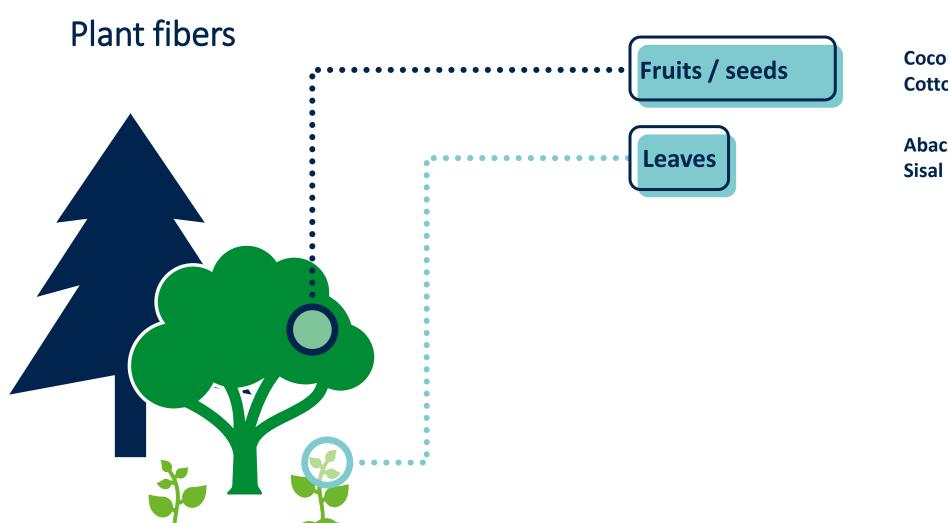
• Fruits / seeds

Plant fibers	Animal fibers	Mineral fibers
Trunk (wood)	Bristles / coarse hair	Asbestos
Bark	· · · · · Wool	Basalt
•••• Stems / stalks	•••• Fine hair	•••• Wollastonite
Leaves	Silk	Whisker (hair crystals)
Fruits / seeds		

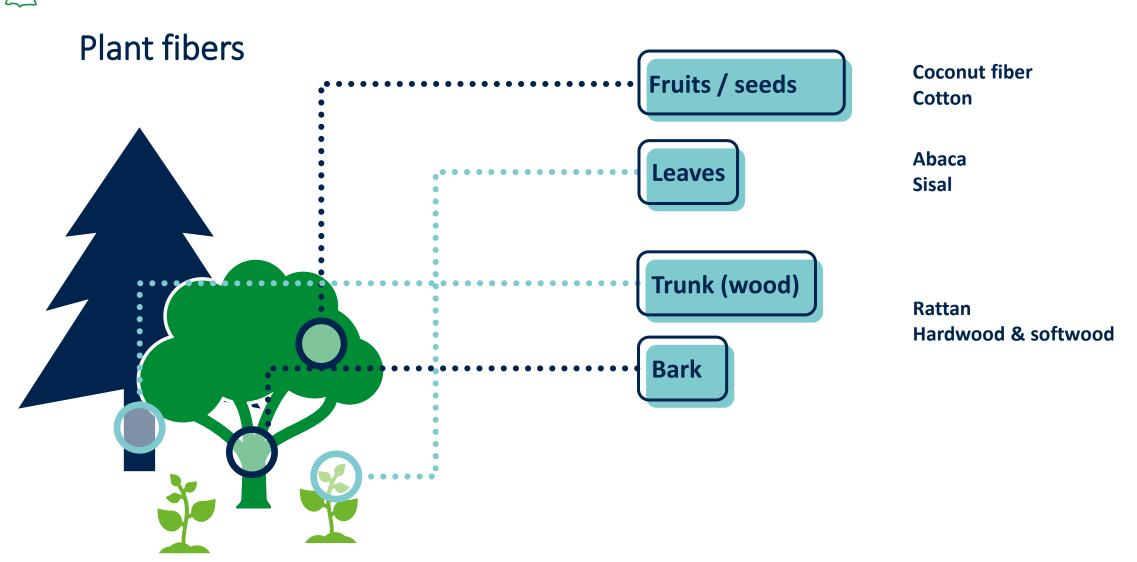


Fruits / seeds

Plant fibers	Animal fibers	Mineral fibers	Synthetic fibers
Trunk (wood)	Bristles / coarse hair	Asbestos	Polymers (e.g., aramid)
Bark	Wool	Basalt	Glass (GF)
Stems / stalks	Fine hair	Wollastonite	Carbon (CF)
Leaves	Silk	Whisker (hair crystals	3)

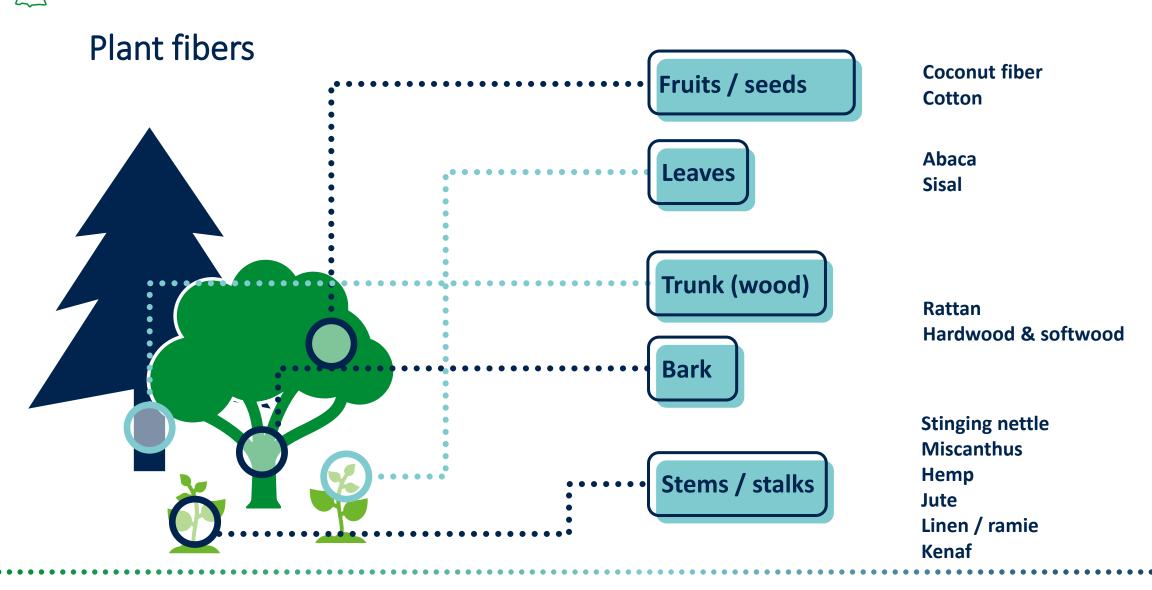


Coconut fiber Cotton


Coconut fiber

Cotton

Abaca



Fiber lengths

Short fibers

0,1 – 1 mm length

Suitable for:

Injection molding Extrusion

Long fibers

1 – 50 mm length

Suitable for:

Injection molding Extrusion

Continuous fibers

>50 mm length

Suitable for:

Rovings (fiber bundle)
Mats

Fiber lengths

Short fibers

0,1 – 1 mm length

Suitable for:

Injection molding Extrusion

Miscanthus: 0,5 − 3 mm

Long fibers

1 – 50 mm length

Suitable for:

Injection molding Extrusion

••••

Wood: 1 - 5 mm (softwood)

> hardwood)

Cotton: 10 - 35 mm

Hemp: 5 - 55 mm

Continuous fibers

>50 mm length

Suitable for:

Rovings (fiber bundle) •••• ◆

Mats

Ramie: 60 – 250 mm

Coconut: 100 – 300 mm

Linen: 250 - 1500 mm

Sisal: 0,6 – 1,2 m

Jute, Abaca, Kenaf: 1,5 – 3,5 m

Fiber lengths

Short fibers

0,1 – 1 mm length

Suitable for:

Injection molding Extrusion

••••

Miscanthus: 0,5 - 3 mm

Long fibers

1 – 50 mm length

Suitable for:

Injection molding Extrusion

••••

Wood: 1 - 5 mm (softwood)

> hardwood)

Cotton: 10 - 35 mm

Hemp: 5 – 55 mm

Continuous fibers

>50 mm length

Suitable for:

Rovings (fiber bundle) •••• ◆

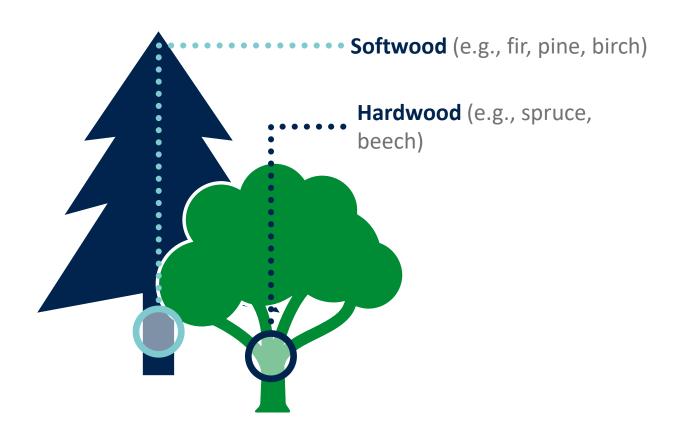
Mats

Ramie: 60 - 250 mm

Coconut: 100 - 300 mm

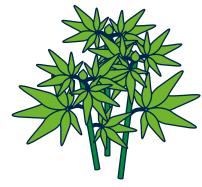
Linen: 250 - 1500 mm

Sisal: 0,6 – 1,2 m


Jute, Abaca, Kenaf: 1,5 – 3,5 m

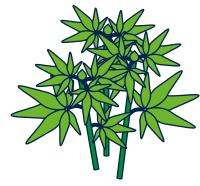
- In principle, any fiber in nature can be incorporated into plastics as filler.
- Important factors are:
 - Availability/quantity
 - Quality
 - Stability (thermal, mechanical, chemical)
 - Processing temperature
 - Mechanics

Wood fibers and flour

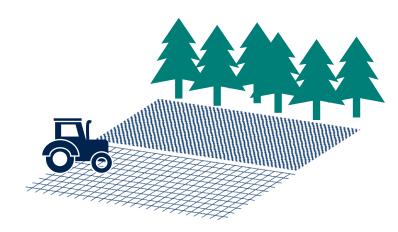


- Wood fibers are different from wood flour (= destroyed fibers)
- Composite materials from polymer and wood are called Wood-Polymer-Compound (WPC).
- Wood flour is classified as filler and can be incorporated with fill levels of 20 - 70 % Füllgrad into composite materials.
- Decomposition temperature: approx. 200 °C
- PE and PP are often used as matrix material.

Hemp as fiber plant



- Requires little to no treatment with pesticides or herbicides.
- Suitable for soil regeneration
- Low water demand
- High CO₂-binding
- Harvested 1-2 times/year (problem: german regulations require growth until (unnecessary) full bloom)



Hemp as fiber plant

- Requires little to no treatment with pesticides or herbicides.
- Suitable for soil regeneration
- Low water demand
- High CO₂-binding
- Harvested 1-2 times/year (problem: german regulations require growth until (unnecessary) full bloom)

- Most widely used in the Middle Ages for textiles (clothing, canvas, ropes, etc.).
- Ban on cultivation led to drastic decline in hemp cultivation.
- Lifting of the ban on cultivation has led to renewed growth in cultivated areas.
- Hemp is used as insulation material, specialy pulp, composite material or filler.

Biobased synthetic fibers

Synthetic fibers

Polymer (e.g., aramid)

•••• Glass (GF)

• • Carbon (CF)

Biobased alternative

Bio-PE

Bio-PA

Bio-PET

PLA

Cellulose derivatives

X

Lignin

Cellulose

Biobased synthetic fibers

Synthetic fibers

Polymer (e.g., aramid)

•••• Glass (GF)

· · Carbon (CF)

Biobased alternative

Bio-PE

Bio-PA

Bio-PET

PLA

Cellulose derivatives

X

Lignin

Cellulose

- Polymer fibers for composite materials can be partially produced from renewable raw materials.
- With the same chemical composition, they are referred to as drop-in solution that can be processed identically.
- Carbon fibers can be produced from lignin or cellulose instead of conventional polyacrylnitrile.
- Please note: the use of bio-based fibers does not result in improved recyclability!

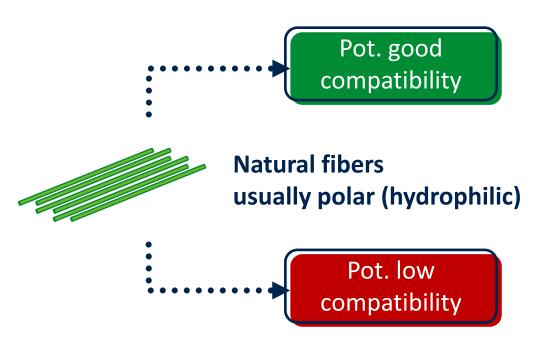
Processing

- Natural fibers often posses **hygroscopic properties**, i.e., they easily absorb significant amounts of water/vapor.
- Moisture can cause the fibers to rot before processing.
- **Dosage** (fiber/matrix ratio) is impaired and **distribution problems** may occur (e.g., bridging between fibers).
- Moisture leads to uncontrolled material distortion during processing – formation of streaks and bubbles in the material can be expected.

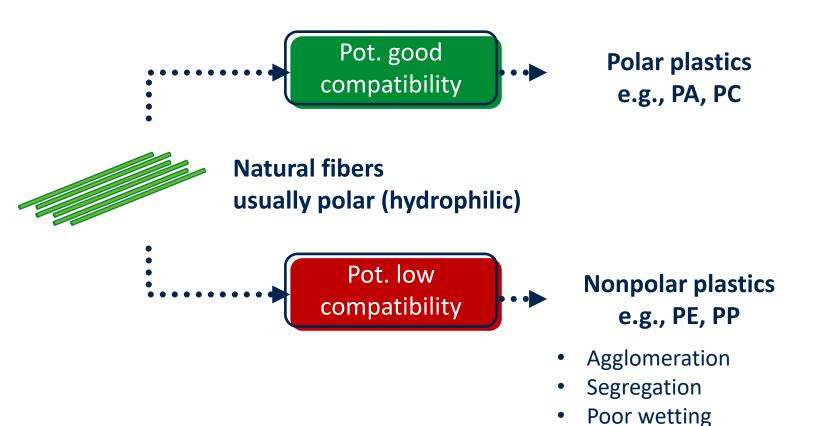
Processing

- Natural fibers often posses hygroscopic properties, i.e., they easily absorb significant amounts of water/vapor.
- Moisture can cause the **fibers to rot** before processing.
- Dosage (fiber/matrix ratio) is impaired and distribution problems may occur (e.g., bridging between fibers).
- Moisture leads to uncontrolled material distortion during processing – formation of streaks and bubbles in the material can be expected.

Polymer	Processing temperatur [°C]
PE	150 – 200
PLA	150 – 180
PA	200
PP	200 – 280



- Hot air drying is necessary.
- Processing temperatures of technical polymers are usally at approx. 150 – 290 °C.
- Decomposition temperature of natural fibers is usually around 200 °C.


Compatibility with plastics

Compatibility with plastics

Compatibility with plastics

Polar plastics e.g., PA, PC

Natural fibers usually polar (hydrophilic)

Nonpolar plastics e.g., PE, PP

- Agglomeration
- Segregation
- Poor wetting

Dispersing agent

- Posses interfacial activity
- Decreases interfacial tension between materials
- Improves mechanical properties
- Exampels: waxses, bifunctional peptides

Comparison of properties

Natural fibers

Density [g/cm³]

Costs [€/kg]

Accoustic

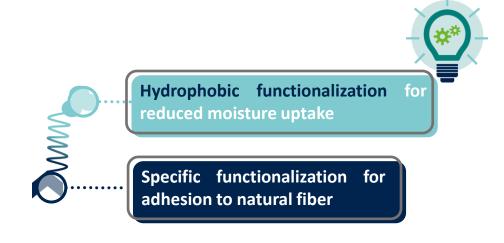
Tensile strength [GPa]

Spec. tensile strength [Nm/g]

E-modulus [GPa]

Splintering likeliness

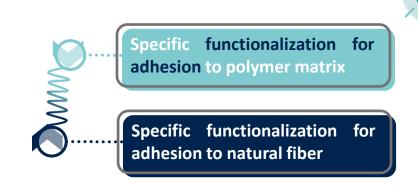
1,5	2,6	1,7 – 1,9
0,5 – 3,5	2	18 – 500
dampening	-	-
0,3 – 0,9	1,8 – 5,0	2,4 – 7,0
200 - 600	700 – 1900	1400 – 3700
10 – 25	70 – 90	230 – 700
low	high	high

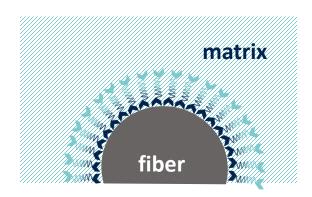


Key technology: biobased coatings

Bifunctional peptides as biobased impregnation

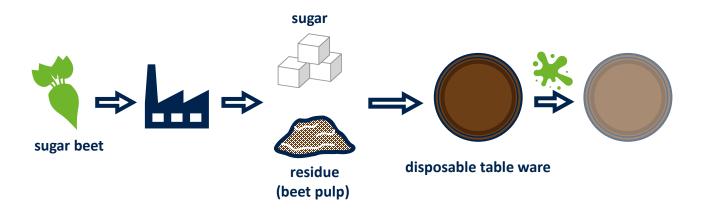
- Material-specific bonding to natural fibers
- Hydrophobic functional domain acts as barrier against moisture uptake and fiber swelling
- Thickness of coating is less than 100 nm
- Functionalization is realized by standard coating methods (e.g., spray coating)
- Purely biobased coating with biodegradability




Key technology: biobased coatings

Bifunctional peptides as biobased adhesion promoters

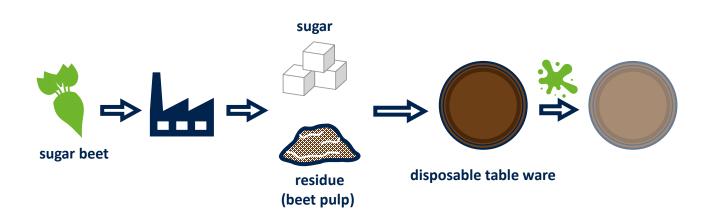
- Material-specific bonding to natural fibers and polymer matrix -> overcoming interfacial tension
- Thickness of coating is less than 100 nm
- High occupancy density
- Functionalization is realized by standard coating methods (e.g., spray coating)



Use Case: Biogenic residues as fibers and fillers

Sugar beet pulp as a raw material for compostable disposable tableware

- Controlled material supply
- Recipe without synthetic/hazardous additives (starch, pectin, glycerine, water)


Research by: **Project EBRA**

Funktionalization by biological coating

Use Case: Biogenic residues as fibers and fillers

Sugar beet pulp as a raw material for compostable disposable tableware

- Controlled material supply
- Recipe without synthetic/hazardous additives (starch, pectin, glycerine, water)
- Funktionalization by biological coating

Research by: **Project EBRA**

Sunflower seed shells as reinforcing filler material in biocomposites:

- Controlled material supply
- Not suitable for thermal recycling/usage -> thermal resistance as advantage for the processing
- Very good compatibility with standard methods of plastics processing

Application examples: flower pots, plant clips, clothes hangers

[adapted from: Golden Compound GmbH]

"Natural fibers enable a sustainable path for innovations that revolutionize industrial applications by combining strength and flexibility with renewability and biodegradability."



True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Natural fibers tend to be hydrophobic and can therefore be easily incorporated into any polymer matrix.
- (2) Natural fibers are hygroscopic, meaning they tend to absorb moisture.
- (3) The type and length of the fibers, as well as their orientation, determine the final strength of the material.
- (4) Natural fibers can be used at all processing temperatures conventionally used for technical polymers.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

(1) Natural fibers tend to be hydrophobic and can therefore be easily incorporated into any polymer matrix.

False! Natural fibers are generally hydrophilic (polar). It may therefore be necessary to use adhesion promoters (dispersing agents) to improve the compatibility of the polymer matrix and the fiber.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Natural fibers tend to be hydrophobic and can therefore be easily incorporated into any polymer matrix.
- (2) Natural fibers are hygroscopic, meaning they tend to absorb moisture.
- (3) The type and length of the fibers, as well as their orientation, determine the final strength of the material.
- (4) Natural fibers can be used at all processing temperatures conventionally used for technical polymers.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Natural fibers tend to be hydrophobic and can therefore be easily incorporated into any polymer matrix.
- (2) Natural fibers are hygroscopic, meaning they tend to absorb moisture.

True! Unlike technical fibers, natural fibers tend to absorb moisture more readily and should therefore be dried before use.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Natural fibers tend to be hydrophobic and can therefore be easily incorporated into any polymer matrix.
- (2) Natural fibers are hygroscopic, meaning they tend to absorb moisture.
- (3) The type and length of the fibers, as well as their orientation, determine the final strength of the material.
- (4) Natural fibers can be used at all processing temperatures conventionally used for technical polymers.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Natural fibers tend to be hydrophobic and can therefore be easily incorporated into any polymer matrix.
- (2) Natural fibers are hygroscopic, meaning they tend to absorb moisture.
- (3) The type and length of the fibers, as well as their orientation, determine the final strength of the material.

True! Natural materials can be suitable for different applications depending on the fiber length. Fibers that are too short and residual materials can be used as fillers (example: wood flour).

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Natural fibers tend to be hydrophobic and can therefore be easily incorporated into any polymer matrix.
- (2) Natural fibers are hygroscopic, meaning they tend to absorb moisture.
- (3) The type and length of the fibers, as well as their orientation, determine the final strength of the material.
- (4) Natural fibers can be used at all processing temperatures conventionally used for technical polymers.

True or false? Evaluate the following statements based on the content from the recent chapter (solutions are presented on the following slide).

- (1) Natural fibers tend to be hydrophobic and can therefore be easily incorporated into any polymer matrix.
- (2) Natural fibers are hygroscopic, meaning they tend to absorb moisture.
- (3) The type and length of the fibers, as well as their orientation, determine the final strength of the material.
- (4) Natural fibers can be used at all processing temperatures conventionally used for technical polymers.

False! When using natural fibers, their decomposition temperature of approx. 200 °C must be taken into account.

Note

This presentation and its contents are property of the TransBIB project, SKZ plastics institute, and Institute of Biotechnolgy at RWTH Aachen University.

The contents may not be distributed or copied for use without prior consent.

© TransBIB 2025