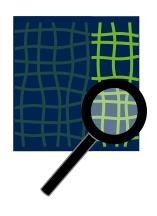


Faserverstärkte Kunststoffe

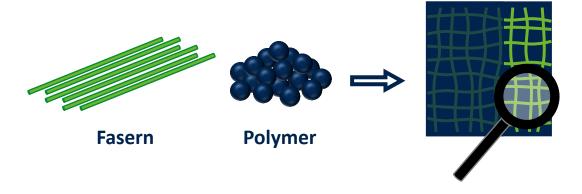
Kompositmaterialien – klassisch & auf Basis von Naturfasern

Gefördert durch:


Neues lernen – Ideen entwickeln – Partner finden

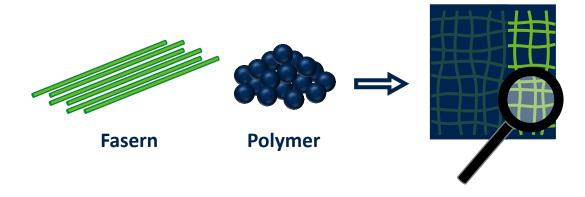
aufgrund eines Beschlusses des Deutschen Bundestages

Inhalt


Kompositmaterialien

- Grundlagen
- Nachhaltigkeitsaspekte
- <u>Faserarten</u>
 - <u>Pflanzenfasern</u>
 - <u>Faserlängen</u>
- Verarbeitung
- <u>Technologien und Beispiele</u>

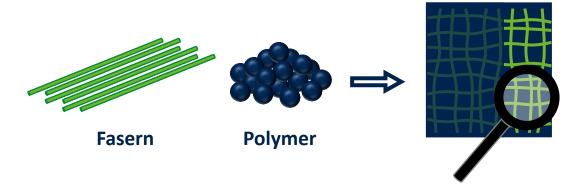
Grundlagen


- Kunststoffe und Polymere im Allgemeinen können bezüglich ihrer mechanischen Festigkeit und Steifigkeit verstärkt werden
- Die Verstärkung erfolgt über das Einbetten von Fasern in die Polymermatrix zur Erzeugung eines Kompositmaterials (FRC = fibre-reinforced composite)
- Typische Fasern in der industriellen Anwendung sind Kohleoder Glasfasern sowie Polymerfasern (z.B. Aramid)

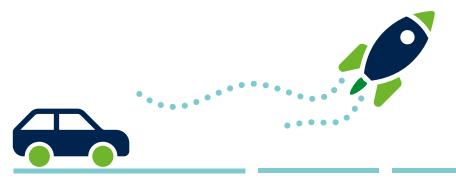
Faserverstärkte Materialien

Grundlagen

- Kunststoffe und Polymere im Allgemeinen können bezüglich ihrer mechanischen Festigkeit und Steifigkeit verstärkt werden
- Die Verstärkung erfolgt über das Einbetten von Fasern in die Polymermatrix zur Erzeugung eines Kompositmaterials (FRC = fibre-reinforced composite)
- Typische Fasern in der industriellen Anwendung sind Kohleoder Glasfasern sowie Polymerfasern (z.B. Aramid)


- Die Fasern sorgen für eine Verstärkung des Materials, während die Polymermatrix diese zusammenhält, schützt und für eine Verteilung von mechanischer Belastung sorgt
- Faserverstärkte Polymerkomposite zeichnen sich durch eine hohe Belastbarkeit und mechanische Stärke bei geringem Gewicht (gutes Kraft/Masse-Verhältnis) und eine gute Haltbarkeit aus

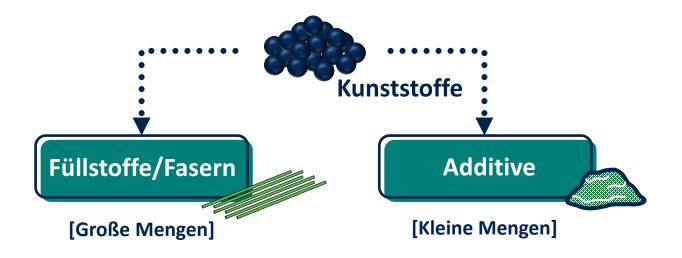
Faserverstärkte Materialien



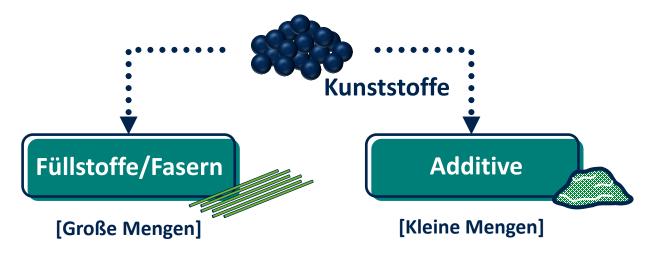
Grundlagen

- Kunststoffe und Polymere im Allgemeinen können bezüglich ihrer mechanischen Festigkeit und Steifigkeit verstärkt werden
- Die Verstärkung erfolgt über das Einbetten von Fasern in die Polymermatrix zur Erzeugung eines Kompositmaterials (FRC = fibre-reinforced composite)
- Typische Fasern in der industriellen Anwendung sind Kohleoder Glasfasern sowie Polymerfasern (z.B. Aramid)

- Die Fasern sorgen für eine Verstärkung des Materials, während die Polymermatrix diese zusammenhält, schützt und für eine Verteilung von mechanischer Belastung sorgt
- Faserverstärkte Polymerkomposite zeichnen sich durch eine hohe Belastbarkeit und mechanische Stärke bei geringem Gewicht (gutes Kraft/Masse-Verhältnis) und eine gute Haltbarkeit aus



 Typische Anwendungen liegen in den Bereichen Automobilindustrie, Luft- und Raumfahrt, Bau und Sportanwendungen – wo hohe Materialstärke bei geringem Gewicht benötigt werden


Füllstoff vs. Additiv

Füllstoff vs. Additiv

- Abfälle: Kalk/Kreide
- Ruß Holzmehl
- Fasern

- Duromere

- Schutzmittel
- Weichmacher
- Stabilisatoren
- Farbpigmente
- Flammschutz
- Haftvermittler...

Für ein optimales Kompositmaterial müssen sowohl die Kompatibilität von Matrix und Faser sichergestellt werden als auch der Produktionsprozess zur Herstellung optimiert werden, um z.B. die Ausrichtung und Verteilung der Fasern zu kontrollieren

Nachhaltigkeitsaspekte

• Die Carbon- und Glasfaserproduktion führt zu großen Mengen an entstehendem CO₂

Die Herstellung dieser Fasern ist zudem sehr

energieaufwendig

Nachhaltigkeitsaspekte

- Die Carbon- und Glasfaserproduktion führt zu großen Mengen an entstehendem CO₂
- Die Herstellung dieser Fasern ist zudem sehr energieaufwendig

- Das **Recycling** von faserverstärkten Kompositmaterialien stellt eine **große Herausforderung** dar
- Notwendige starke Bindung zwischen Fasern und Matrix erschwert die spätere Trennung -> große Gefahr die Fasern zu zerstören und der Verunreinigung des Polymermaterials
- Recyclingmethoden sind derzeit noch in der Erprobung und nicht universell anwendbar
- Viele Verfahren (z.B. mechanisches und thermisches Recycling) sind teuer und energieaufwendig

Pflanzliche Fasern

••• Stamm (Holz)

Rinde

••• Stiele / Halme

Blätter

Früchte / Samen

Pflanzliche Fasern

Tierische Fasern

Borsten / Grobhaar

Stamm (Holz)

Rinde Wolle

Stiele / Halme

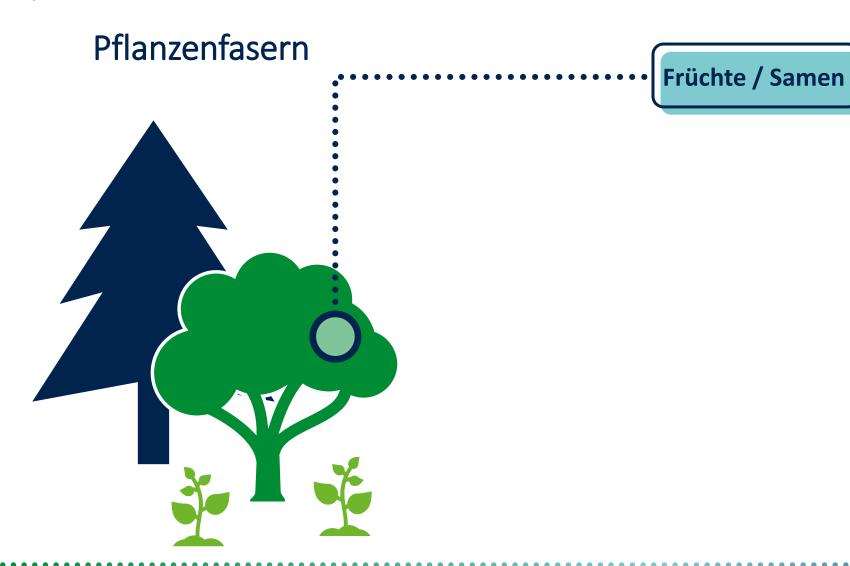
Feinhaar

• Blätter

• Seide

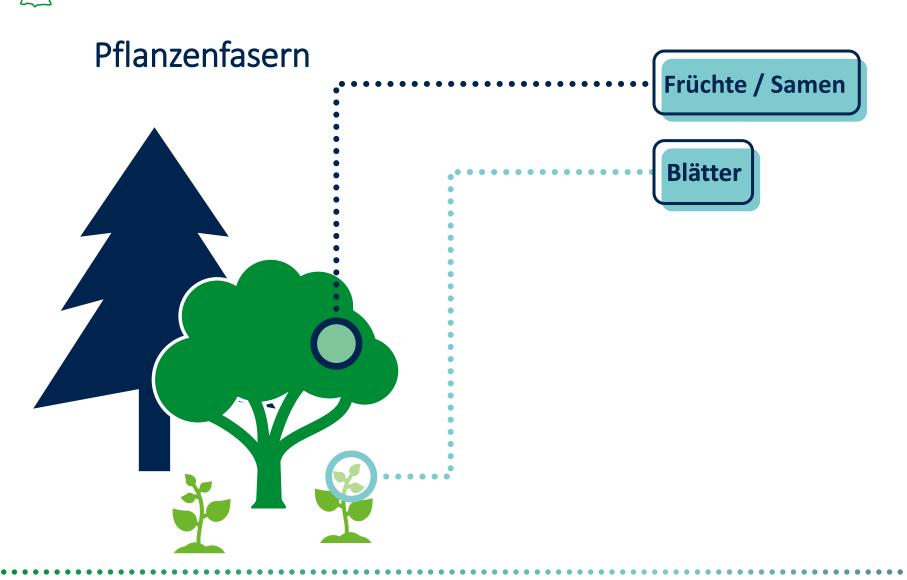
• Früchte / Samen

Pflanzliche Fasern	Tierische Fasern	Mineralische Fasern
Stamm (Holz)	Borsten / Grobhaar	Asbest
Rinde	•••• Wolle	Basalt
Stiele / Halme	•••• Feinhaar	•••• Wollastonit
Blätter	Seide	••••• Whisker (Haarkristalle)
Früchte / Samen		

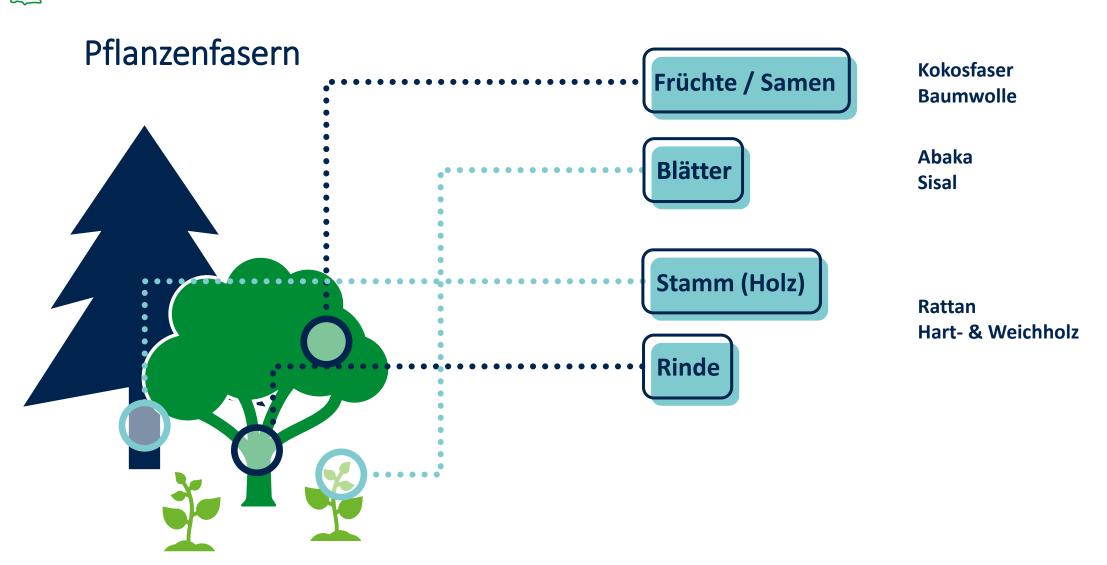


Früchte / Samen

Pflanzliche Fasern	Tierische Fasern	Mineralische Fasern	Synthetische Fasern
Stamm (Holz)	Borsten / Grobhaar	•••• Asbest	Polymer (z.B. Aramid)
Rinde	••••• Wolle	Basalt	Glas (GF)
Stiele / Halme	Feinhaar	Wollastonit	Carbon (CF)
Blätter	Seide	Whisker (Haarkristalle	e)

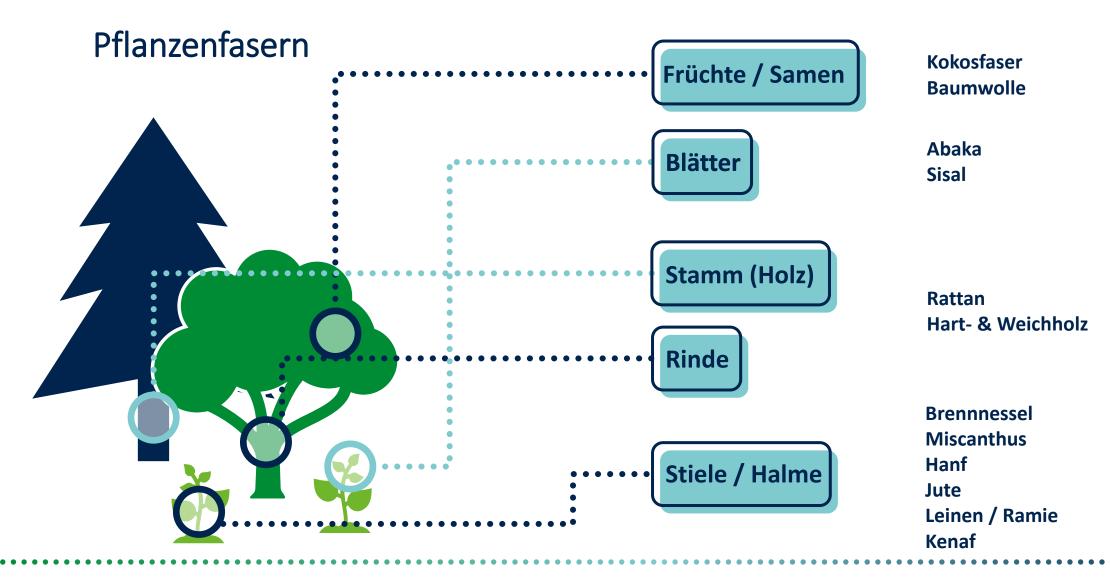


Kokosfaser Baumwolle



Kokosfaser Baumwolle

Abaka Sisal



Faserlängen

Kurzfasern

0,1 – 1 mm Länge

Geeignet für:

Spritzguss Extrusion

Langfasern

1 – 50 mm Länge

Geeignet für:

Spritzguss Extrusion

Endlosfasern

>50 mm Länge

Geeignet für:

Rovings (Faserbündel) Matten

Faserlängen

Kurzfasern

0,1 – 1 mm Länge

Geeignet für:

Spritzguss Extrusion

Miscanthus: 0,5 – 3 mm

Langfasern

1 – 50 mm Länge

Geeignet für:

Spritzguss Extrusion

••••

Holz: 1 - 5 mm (Weichholz

> Hartholz)

Baumwolle: 10 - 35 mm

Hanf: 5 – 55 mm

Endlosfasern

>50 mm Länge

Geeignet für:

Rovings (Faserbündel) •••• ◆

Matten

Ramie: 60 – 250 mm

Kokos: 100 - 300 mm

Leinen: 250 - 1500 mm

Sisal: 0,6 – 1,2 m

Jute, Abaka, Kenaf: 1,5 – 3,5 m

Faserlängen

Kurzfasern

0,1 – 1 mm Länge

Geeignet für:

Spritzguss Extrusion

••••

Miscanthus: 0,5 - 3 mm

Langfasern

1 – 50 mm Länge

Geeignet für:

Spritzguss Extrusion

••••

Holz: 1 – 5 mm (Weichholz

> Hartholz)

Baumwolle: 10 - 35 mm

Hanf: 5 – 55 mm

Endlosfasern

>50 mm Länge

Geeignet für:

Rovings (Faserbündel) •••••

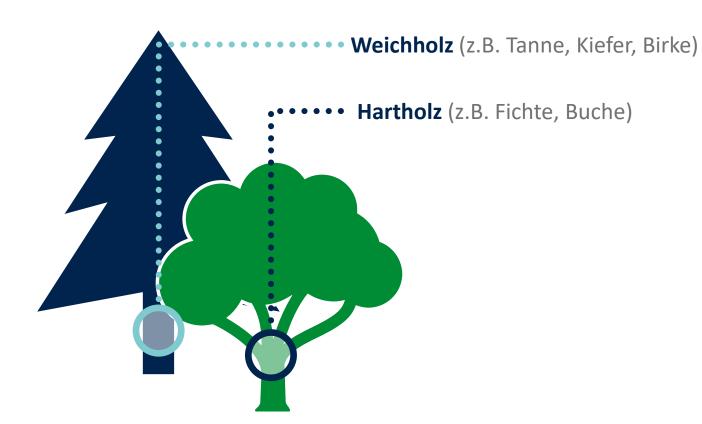
Matten

Ramie: 60 – 250 mm

Kokos: 100 - 300 mm

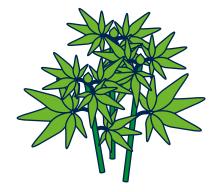
Leinen: 250 - 1500 mm

Sisal: 0,6 – 1,2 m


Jute, Abaka, Kenaf: 1,5 – 3,5 m

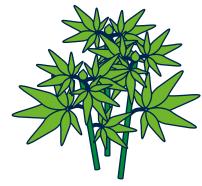
- Grundsätzlich kann jede in der Natur verfügbare Faser als Füllstoff in Kunststoffe eingearbeitet werden
- Wichtige Faktoren sind:
 - Verfügbarkeit/Menge
 - Qualität
 - Stabilität (thermisch, mechanisch, chemisch)
 - Verarbeitungstemperatur
 - Mechanik

Holzfasern und Holzmehl

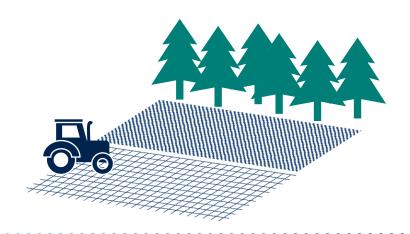


- Holzfasern unterscheiden sich von Holzmehl (= zerstörte Fasern)
- Kompositmaterial aus Polymer und Holz wird als
 Wood-Polymer-Compound (WPC) bezeichnet
- Holzmehl ist ein Füllstoff und kann mit ca. 20 70 %
 Füllgrad in ein Kompositmaterial eingebracht werden.
- Zersetzungstemperatur: ca. 200 °C
- Häufig in PE oder PP Matrix

Faserpflanze Hanf



- Benötigt kaum bis keine Behandlung durch Pestizide oder Herbizide
- Eignet sich zur Bodenregenerierung
- Wenig Wasserbedarf
- Hohe CO₂-Bindung
- Ernte 1-2 mal pro Jahr (Problematik: Regulatorik in Deutschland erfordert Wachstum bis zur (nicht benötigten) Vollblüte)



Faserpflanze Hanf

- Benötigt kaum bis keine Behandlung durch Pestizide oder Herbizide
- Eignet sich zur Bodenregenerierung
- Wenig Wasserbedarf
- Hohe CO₂-Bindung
- Ernte 1-2 mal pro Jahr (Problematik: Regulatorik in Deutschland erfordert Wachstum bis zur (nicht benötigten) Vollblüte)

- Größte Nutzung im Mittelalter für Textilien (Kleidung, Segeltuch, Seile etc.)
- Anbauverbot führte zu drastischem Rückgang des Hanfanbaus
- Aufhebung des Anbauverbots hat zu erneut wachsenden Anbauflächen geführt
- Nutzung als Dämmstoff, Spezialzellstoff,
 Verbundwerkstoff oder Füllstoff

Biobasierte synthetische Fasern

Synthetische Fasern Polymer (z.B. Aramid) Glas (GF) Carbon (CF)

Biobasierte Variante

Bio-PE
Bio-PA
Bio-PET
PLA

Cellulose Derivate

X

Lignin Cellulos

Biobasierte synthetische Fasern

Synthetische Fasern

Polymer (z.B. Aramid)

•••• Glas (GF)

• • Carbon (CF)

Biobasierte Variante

Bio-PE

Bio-PA

Bio-PET

PLA

Cellulose Derivate

X

Lignin

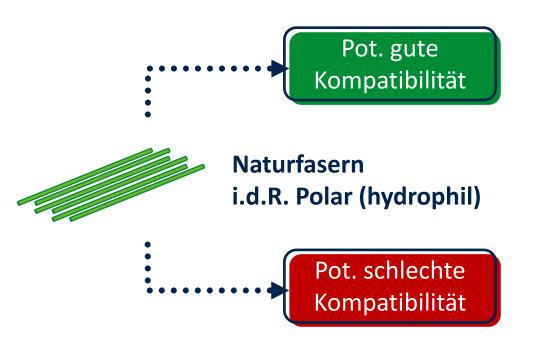
- Polymerfasern für Kompositmaterialien lassen sich zum Teil auf Basis nachwachsender Rohstoffe herstellen.
- Sie entsprechen bei gleicher chemische Zusammensetzung einer Drop-in Lösung, die identisch verarbeitet werden kann.
- Carbonfasern können auch auf Basis von Lignin oder Cellulose hergestellt werden, anstelle von Polyacrylnitril.
- Achtung: eine Verwendung biobasierter Fasern bedeutet keine verbesserte Rezyklierbarkeit!

Verarbeitung

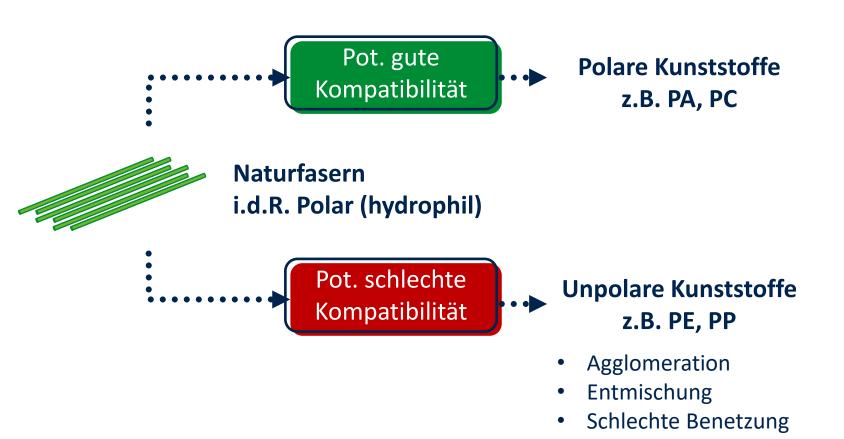
- Naturfasern haben oft **hygroskopische Eigenschaften**, d.h. sie nehmen leicht größere Mengen Feuchtigkeit auf
- Feuchtigkeit kann vor der Verarbeitung zu Fäulnis der Fasern führen
- Dosierung (Faser/Matrix-Verhältnis) wird verfälscht und Probleme bei der Verteilung können auftreten (z.B. Brückenbildung zwischen den Fasern)
- Feuchtigkeit führt zu unkontrolliertem Materialverzug bei der Verarbeitung – Bildung von Schlieren und Blasen im Material

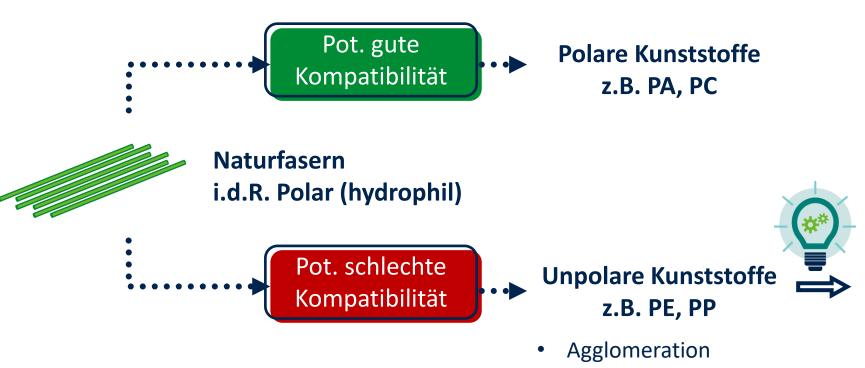
Verarbeitung

- Naturfasern haben oft hygroskopische Eigenschaften, d.h. sie nehmen leicht größere Mengen Feuchtigkeit auf
- Feuchtigkeit kann vor der Verarbeitung zu Fäulnis der Fasern führen
- Dosierung (Faser/Matrix-Verhältnis) wird verfälscht und Probleme bei der Verteilung können auftreten (z.B. Brückenbildung zwischen den Fasern)
- Feuchtigkeit führt zu unkontrolliertem Materialverzug bei der Verarbeitung – Bildung von Schlieren und Blasen im Material


Polymer	Verarbeitungstemperatur [°C]
PE	150 – 200
PLA	150 – 180
PA	200
PP	200 – 280

- Warmlufttrocknung notwendig
- **Verarbeitungstemperaturen** von technischen Polymeren liegen für gewöhnlich bei **150 290 °C**
- Zersetzungstemperatur von Naturfasern liegt bei ca.
 200 °C


Kompatibilität mit Kunststoffen


Kompatibilität mit Kunststoffen

Kompatibilität mit Kunststoffen

- Entmischung
- Schlechte Benetzung

Dispergierhilfsmittel

- Ist grenzflächenaktiv
- Verringert die Grenzflächenspannung zw. zwei Materialien
- Verbessert die mechanischen Eigenschaften
- Beispiel: Wachse, bifunktionelle
 Peptide

Eigenschaftenvergleich

Dichte [g/cm³]

Kosten [€/kg]

Akustik

Zugfestigkeit [GPa]

Spez. Zugfestigkeit [Nm/g]

E-Modulus [GPa]

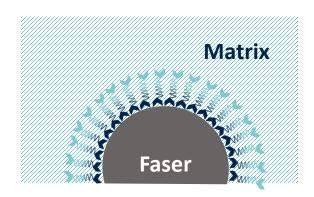
Splitterverhalten

Naturfaser	Glasfaser	Carbonfaser
1,5	2,6	1,7 – 1,9
0,5 – 3,5	2	18 – 500
dämpfend	-	-
0,3 – 0,9	1,8 – 5,0	2,4 – 7,0
200 - 600	700 – 1900	1400 – 3700
10 – 25	70 – 90	230 – 700
gering	hoch	hoch

Schlüsseltechnologie: Biobasierte Beschichtungen

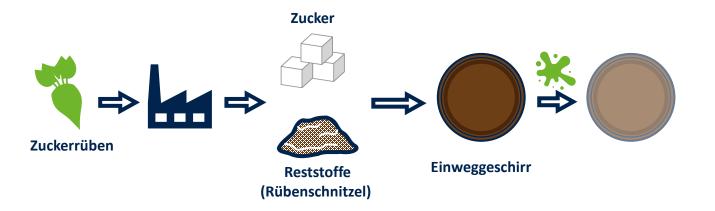
Bifunktionale Peptide als biobasierte Imprägnierung

- Material-spezifische Anbindung an Naturfaser
- Hydrophobe Funktionsdomäne verhindert als Barriereschicht eine Feuchtigkeitsaufnahme und Faserquellung
- Dicke der Beschichtung unter 100 nm
- Funktionalisierung durch Standardmethoden der Beschichtung (z.B. Spray Coating)
- Rein biobasierte Beschichtung mit biologischer Abbaubarkeit


Schlüsseltechnologie: Biobasierte Beschichtungen

Bifunktionale Peptide als biobasierte Adhäsionsvermittler

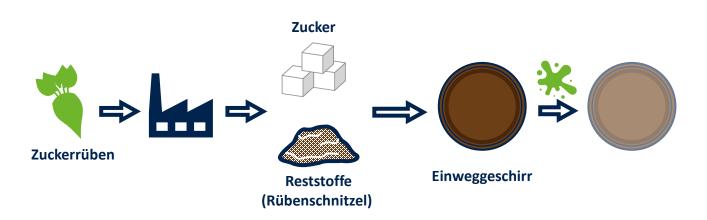
- Material-spezifische Anbindung an Naturfaser und Polymermatrix -> Überwindung der Grenzflächenspannung
- Dicke der Beschichtung unter 100 nm
- Hohe Belegungsdichte
- Funktionalisierung durch Standardmethoden der Beschichtung (z.B. Spray Coating)



Use Case: Biogene Reststoffe als Faser oder Füllstoff

Zuckerrübenschnitzel als Rohstoff für kompostierbares Einweggeschirr

- Kontrollierte Stoffstöme
- Rezeptur ohne synthetische/bedenkliche Additive (Stärke, Pektin, Glycerin, Wasser)
- Funktionalisierung durch biologisches Coating


Daran forscht:

Projekt EBRA

Use Case: Biogene Reststoffe als Faser oder Füllstoff

Zuckerrübenschnitzel als Rohstoff für kompostierbares Einweggeschirr

- Kontrollierte Stoffstöme
- Rezeptur ohne synthetische/bedenkliche Additive (Stärke, Pektin, Glycerin, Wasser)
- Funktionalisierung durch biologisches Coating

Daran forscht: **Projekt EBRA**

Schalen von Sonnenblumenkernen als verstärkendes Füllmaterial in Biokompositen:

- Kontrollierte Stoffströme
- Nicht für themische Nutzung geeignet -> thermische Beständigkeit als Vorteil für die Verarbeitung
- Sehr gute Nutzung mit Standardverfahren der Kunststoffverarbeitung

Anwendungsbeispiele: Blumentöpfe, Pflanzenclips, Kleiderbügel

[gesehen bei: Golden Compound GmbH]

"Naturfasern ermöglichen einen nachhaltigen Weg für Innovationen zur Revolutionierung industrieller Anwendungen, indem sie Stärke und Flexibilität, mit Erneuerbarkeit und Bioabbaubarkeit verbinden."

- (1) Naturfasern sind tendenziell hydrophob und können daher problemlos in jede Polymermatrix eingebracht werden.
- (2) Naturfasern sind hygroskopisch, d.h. sie neigen dazu Feuchtigkeit aufzunehmen.
- (3) Die Faserart und -länge und auch die Lage der Fasern bestimmen die finale Festigkeit des Materials.
- (4) Naturfasern können bei allen Verarbeitungstemperaturen technischer Polymere zum Einsatz kommen.

Richtig oder falsch? Bewerten Sie die folgenden Aussagen auf Basis der Inhalte aus dem aktuellen Kapitel (Auflösung jeweils auf der nächsten Folie).


(1) Naturfasern sind tendenziell hydrophob und können daher problemlos in jede

Polymermatrix eingebracht werden.

Falsch! Naturfasern sind in der Regel hydrophil (polar). Es kann daher notwendig sein Adhäsionsvermittler (Dispergiermittel) einzusetzen, um die Kompatibilität von Polymermatrix und Faser zu verbessern.

- (1) Naturfasern sind tendenziell hydrophob und können daher problemlos in jede Polymermatrix eingebracht werden.
- (2) Naturfasern sind hygroskopisch, d.h. sie neigen dazu Feuchtigkeit aufzunehmen.
- (3) Die Faserart und -länge und auch die Lage der Fasern bestimmen die finale Festigkeit des Materials.
- (4) Naturfasern können bei allen Verarbeitungstemperaturen technischer Polymere zum Einsatz kommen.

- (1) Naturfasern sind tendenziell hydrophob und können daher problemlos in jede Polymermatrix eingebracht werden.
- (2) Naturfasern sind hygroskopisch, d.h. sie neigen dazu Feuchtigkeit aufzunehmen. Richtig! Anders als technische Fasern neigen Naturfasern verstärkt zur Feuchtigkeitsaufnahme und sollten daher vor der Verwendung getrocknet werden.

- (1) Naturfasern sind tendenziell hydrophob und können daher problemlos in jede Polymermatrix eingebracht werden.
- (2) Naturfasern sind hygroskopisch, d.h. sie neigen dazu Feuchtigkeit aufzunehmen.
- (3) Die Faserart und -länge und auch die Lage der Fasern bestimmen die finale Festigkeit des Materials.
- (4) Naturfasern können bei allen Verarbeitungstemperaturen technischer Polymere zum Einsatz kommen.

Richtig oder falsch? Bewerten Sie die folgenden Aussagen auf Basis der Inhalte aus dem aktuellen Kapitel (Auflösung jeweils auf der nächsten Folie).

- (1) Naturfasern sind tendenziell hydrophob und können daher problemlos in jede Polymermatrix eingebracht werden.
- (2) Naturfasern sind hygroskopisch, d.h. sie neigen dazu Feuchtigkeit aufzunehmen.
- (3) Die Faserart und -länge und auch die Lage der Fasern bestimmen die finale Festigkeit des Materials.

Richtig! Naturmaterialien können je nach Faserlänge für verschiedene Anwendungen geeignet sein. Zu kurze Fasern und Reststoffe können als Füllstoff verwendet werden (Beispiel: Holzmehl).

- (1) Naturfasern sind tendenziell hydrophob und können daher problemlos in jede Polymermatrix eingebracht werden.
- (2) Naturfasern sind hygroskopisch, d.h. sie neigen dazu Feuchtigkeit aufzunehmen.
- (3) Die Faserart und -länge und auch die Lage der Fasern bestimmen die finale Festigkeit des Materials.
- (4) Naturfasern können bei allen Verarbeitungstemperaturen technischer Polymere zum Einsatz kommen.

Richtig oder falsch? Bewerten Sie die folgenden Aussagen auf Basis der Inhalte aus dem aktuellen Kapitel (Auflösung jeweils auf der nächsten Folie).

- (1) Naturfasern sind tendenziell hydrophob und können daher problemlos in jede Polymermatrix eingebracht werden.
- (2) Naturfasern sind hygroskopisch, d.h. sie neigen dazu Feuchtigkeit aufzunehmen.
- (3) Die Faserart und -länge und auch die Lage der Fasern bestimmen die finale Festigkeit des Materials.
- (4) Naturfasern können bei allen Verarbeitungstemperaturen technischer Polymere zum Einsatz kommen.

Falsch! Bei der Verwendung von Naturfasern ist deren Zersetzungstemperatur zu beachten. Diese liegt bei durchschnittlich 200 °C.

Hinweis

Diese Präsentation ist mit ihren Inhalten Eigentum des Projekts TransBIB, des SKZ – Das Kunststoffzentrum und des Lehrstuhls für Biotechnologie der RWTH Aachen University.

Eine Weitergabe oder Verwendung der Inhalte ist ohne vorherige Zustimmung nicht gestattet.

© TransBIB 2025